Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden; Science for Life Laboratory, Drug Discovery and Development Platform, Biochemical and Cellular Assay Facility, Stockholm, Sweden and Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
Science for Life Laboratory, Drug Discovery and Development Platform, Biochemical and Cellular Assay Facility, Stockholm, Sweden and Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
Redox Biol. 2020 May;32:101491. doi: 10.1016/j.redox.2020.101491. Epub 2020 Mar 3.
Chemical proteomics encompasses novel drug target deconvolution methods in which compound modification is not required. Herein we use Thermal Proteome Profiling, Functional Identification of Target by Expression Proteomics and multiplexed redox proteomics for deconvolution of auranofin targets to aid elucidation of its mechanisms of action. Auranofin (Ridaura®) was approved for treatment of rheumatoid arthritis in 1985. Because several clinical trials are currently ongoing to repurpose auranofin for cancer therapy, comprehensive characterization of its targets and effects in cancer cells is important. Together, our chemical proteomics tools confirmed thioredoxin reductase 1 (TXNRD1, EC:1.8.1.9) as a main auranofin target, with perturbation of oxidoreductase pathways as the top mechanism of drug action. Additional indirect targets included NFKB2 and CHORDC1. Our comprehensive data can be used as a proteomic signature resource for further analyses of the effects of auranofin. Here we also assessed the orthogonality and complementarity of different chemical proteomics methods that can furnish invaluable mechanistic information and thus the approach can facilitate drug discovery efforts in general.
化学蛋白质组学涵盖了新型药物靶标解析方法,其中不需要进行化合物修饰。在这里,我们使用热蛋白质组谱分析、表达蛋白质组学功能鉴定和多指标氧化还原蛋白质组学来解析金诺芬的靶标,以帮助阐明其作用机制。金诺芬(Ridaura®)于 1985 年被批准用于治疗类风湿关节炎。由于目前有几项临床试验正在进行中,将金诺芬重新用于癌症治疗,因此全面描述其在癌细胞中的靶标和作用非常重要。我们的化学蛋白质组学工具共同证实,硫氧还蛋白还原酶 1(TXNRD1,EC:1.8.1.9)是金诺芬的主要靶标,氧化还原酶途径的扰动是药物作用的主要机制。其他间接靶标包括 NFKB2 和 CHORDC1。我们的综合数据可用作蛋白质组学特征资源,进一步分析金诺芬的作用。在这里,我们还评估了不同化学蛋白质组学方法的正交性和互补性,这些方法可以提供宝贵的机制信息,从而有助于一般的药物发现工作。