The Ohio State University, Center for Applied Plant Sciences, Wooster, OH, USA.
CNRS, Centre National de la Recherche Scientifique, Montpellier, France.
Insect Biochem Mol Biol. 2020 Jun;121:103363. doi: 10.1016/j.ibmb.2020.103363. Epub 2020 Mar 19.
In agricultural systems, crops equipped with host-plant resistance (HPR) have enhanced protection against pests, and are used as a safe and sustainable tool in pest management. In soybean, HPR can control the soybean aphid (Aphis glycines), but certain aphid populations have overcome this resistance (i.e., virulence). The molecular mechanisms underlying aphid virulence to HPR are unknown, but likely involve effector proteins that are secreted by aphids to modulate plant defenses. Another mechanism to facilitate adaptation is through the activity of transposable elements, which can become activated by stress. In this study, we performed RNA sequencing of virulent and avirulent soybean aphids fed susceptible or resistant (Rag1 + Rag2) soybean. Our goal was to better understand the molecular mechanisms underlying soybean aphid virulence. Our data showed that virulent aphids mostly down regulate putative effector genes relative to avirulent aphids, especially when aphids were fed susceptible soybean. Decreased expression of effectors may help evade HPR plant defenses. Virulent aphids also transcriptionally up regulate a diverse set of transposable elements and nearby genes, which is consistent with stress adaptation. Our work demonstrates two mechanisms of pest adaptation to resistance, and identifies effector gene targets for future functional testing.
在农业系统中,具有寄主植物抗性(HPR)的作物可以增强对害虫的保护,并且是害虫管理中一种安全且可持续的工具。在大豆中,HPR 可以控制大豆蚜(Aphis glycines),但某些蚜虫种群已经克服了这种抗性(即毒力)。蚜虫对 HPR 产生毒力的分子机制尚不清楚,但可能涉及蚜虫分泌的效应蛋白,这些蛋白可以调节植物防御。另一种促进适应的机制是通过转座元件的活性,转座元件可以通过应激而被激活。在这项研究中,我们对喂食敏感或抗性(Rag1+Rag2)大豆的有毒和无毒大豆蚜进行了 RNA 测序。我们的目标是更好地了解大豆蚜毒力的分子机制。我们的数据表明,与无毒蚜虫相比,有毒蚜虫主要下调假定的效应基因,尤其是当蚜虫喂食敏感大豆时。效应物表达的降低可能有助于逃避 HPR 植物防御。有毒蚜虫还转录上调了一组多样化的转座元件和附近的基因,这与应激适应一致。我们的工作展示了两种害虫对抗性的适应机制,并确定了效应基因作为未来功能测试的靶标。