Schroepfer Michaela, Junghans Frauke, Voigt Diana, Meyer Michael, Breier Anette, Schulze-Tanzil Gundula, Prade Ina
Research Institute of Leather and Plastic Sheeting (FILK), Meissner Ring 1-5, 09599 Freiberg, Germany.
Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069 Dresden, Germany.
ACS Omega. 2020 Mar 5;5(10):5498-5507. doi: 10.1021/acsomega.0c00126. eCollection 2020 Mar 17.
For the regeneration or creation of functional tissues, biodegradable biomaterials including polylactic acid (PLA) are widely preferred. Modifications of the material surface are quite common to improve cell-material interactions and thereby support the biological outcome. Typical approaches include a wet chemical treatment with mostly hazardous substances or a functionalization with plasma. In the present study, gas-phase fluorination was applied to functionalize the PLA surfaces in a simple and one-step process. The biological response including biocompatibility, cell adhesion, cell spreading, and proliferation was analyzed in cell culture experiments with fibroblasts L929 and correlated with changes in the surface properties. Surface characterization methods including surface energy and isoelectric point measurements, X-ray photoelectron spectroscopy, and atomic force microscopy were applied to identify the effects of fluorination on PLA. Gas-phase fluorination causes the formation of C-F bonds in the PLA backbone, which induce a shift to a more hydrophilic and polar surface. The slightly negatively charged surface dramatically improves cell adhesion and spreading of cells on the PLA even with low fluorine content. The results indicate that this improved biological response is protein- but not integrin-dependent. Gas-phase fluorination is therefore an efficient technique to improve cellular response to biomaterial surfaces without losing cytocompatibility.
为了实现功能性组织的再生或创建,包括聚乳酸(PLA)在内的可生物降解生物材料被广泛青睐。对材料表面进行改性以改善细胞与材料的相互作用从而支持生物学结果是很常见的做法。典型的方法包括使用大多为有害物质的湿化学处理或等离子体功能化。在本研究中,采用气相氟化法以简单的一步法对PLA表面进行功能化。在与成纤维细胞L929进行的细胞培养实验中分析了包括生物相容性、细胞黏附、细胞铺展和增殖在内的生物学反应,并将其与表面性质的变化相关联。应用了包括表面能和等电点测量、X射线光电子能谱和原子力显微镜在内的表面表征方法来确定氟化对PLA的影响。气相氟化导致PLA主链中形成C-F键,这使得表面转变为更亲水和极性更强的表面。即使氟含量较低,略带负电荷的表面也能显著改善细胞在PLA上的黏附和铺展。结果表明,这种改善的生物学反应是蛋白质依赖性而非整合素依赖性的。因此,气相氟化是一种在不丧失细胞相容性的情况下改善细胞对生物材料表面反应的有效技术。