Woolf M Shane, Dignan Leah M, Lewis Hannah M, Tomley Christopher J, Nauman Aeren Q, Landers James P
University of Virginia, USA.
Lab Chip. 2020 Apr 21;20(8):1426-1440. doi: 10.1039/c9lc01187k. Epub 2020 Mar 23.
Microvalving is a pivotal component in many microfluidic lab-on-a-chip platforms and micro-total analysis systems (μTAS). Effective valving is essential for the integration of multiple unit operations, such as, liquid transport, mixing, aliquoting, metering, washing, and fractionation. The ideal microfluidic system integrates numerous, sequential unit operations, provides precise spaciotemporal reagent release and flow control, and is amenable to rapid, low-cost fabrication and prototyping. Centrifugal microfluidics is an attractive approach that minimizes the need for supporting peripheral hardware. However, many of the microfluidic valving methods described in the literature suffer from operational limitations and fail when high rotational frequencies or pressure heads are required early in the analytical process. Current approaches to valve closure add unnecessary complexity to the microfluidic architecture, require the incorporation of additional materials such as wax, and entail extra fabrication steps or processes. Herein we report the characterization and optimization of a laser-actuated, closable valve method for polymeric microfluidic devices that ameliorates these shortcomings. Under typical operational conditions (rcf ≤605 ×g) a success rate >99% was observed, i.e. successful valve closures remained leak free through 605 ×g. Implementation of the laser-actuated closable valving system is demonstrated on an automated, centrifugally driven dynamic solid phase extraction (dSPE) device. Compatibility of this laser-actuated valve closure approach with commercially available polymerase chain reaction (PCR) assays is established by the generation of full 18-plex STR profiles from DNA purified via on-disc dSPE. This novel approach promises to simplify microscale valving, improve functionality by increasing the number of integrated unit operations, and allow for the automation of progressively complex biochemical assays.
微阀是许多微流控芯片实验室平台和微全分析系统(μTAS)中的关键部件。有效的阀门对于多种单元操作的集成至关重要,例如液体传输、混合、分装、计量、清洗和分离。理想的微流控系统集成了众多连续的单元操作,提供精确的时空试剂释放和流量控制,并且易于快速、低成本地制造和原型制作。离心微流控是一种有吸引力的方法,可将对支持外围硬件的需求降至最低。然而,文献中描述的许多微流控阀门方法存在操作限制,并且在分析过程早期需要高旋转频率或压头时会失效。当前关闭阀门的方法给微流控架构增加了不必要的复杂性,需要加入额外的材料如蜡,并且需要额外的制造步骤或工艺。在此,我们报告了一种用于聚合物微流控装置的激光驱动可关闭阀门方法的表征和优化,该方法改善了这些缺点。在典型操作条件下(相对离心力≤605×g),观察到成功率>99%,即成功关闭的阀门在605×g的条件下仍无泄漏。在自动化的离心驱动动态固相萃取(dSPE)装置上展示了激光驱动可关闭阀门系统的应用。通过从经盘上dSPE纯化的DNA生成完整的18重短串联重复序列(STR)图谱,确立了这种激光驱动阀门关闭方法与市售聚合酶链反应(PCR)检测的兼容性。这种新方法有望简化微尺度阀门,通过增加集成单元操作的数量来提高功能,并实现日益复杂的生化检测的自动化。