Clark Charles P, Woolf M Shane, Karstens Sarah L, Lewis Hannah M, Nauman Aeren Q, Landers James P
Department of Chemistry, University of Virginia, Charlottesville, VA 22903, USA.
Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22903, USA.
Micromachines (Basel). 2020 Jun 27;11(7):627. doi: 10.3390/mi11070627.
This study explores three unique approaches for closing valves and channels within microfluidic systems, specifically multilayer, centrifugally driven polymeric devices. Precise control over the cessation of liquid movement is achieved through either the introduction of expanding polyurethane foam, the application of direct contact heating, or the redeposition of xerographic toner via chloroform solvation and evaporation. Each of these techniques modifies the substrate of the microdevice in a different way. All three are effective at closing a previously open fluidic pathway after a desired unit operation has taken place, i.e., sample metering, chemical reaction, or analytical measurement. Closing previously open valves and channels imparts stringent fluidic control-preventing backflow, maintaining pressurized chambers within the microdevice, and facilitating sample fractionation without cross-contamination. As such, a variety of microfluidic bioanalytical systems would benefit from the integration of these valving approaches.
本研究探索了三种用于封闭微流控系统内阀门和通道的独特方法,具体是针对多层离心驱动聚合物装置。通过引入膨胀聚氨酯泡沫、应用直接接触加热或通过氯仿溶剂化和蒸发再沉积静电复印调色剂,实现了对液体流动停止的精确控制。这些技术中的每一种都以不同方式改变了微型装置的基底。在进行了所需的单元操作(即样品计量、化学反应或分析测量)之后,所有这三种方法都能有效地封闭先前开放的流体通道。封闭先前开放的阀门和通道可实现严格的流体控制,防止回流,维持微型装置内的加压腔室,并有助于进行无交叉污染的样品分馏。因此,多种微流控生物分析系统将受益于这些阀门方法的集成。