Suppr超能文献

利用高光谱成像技术快速检测鲜茶叶的品质指标。

Rapid detection of quality index of postharvest fresh tea leaves using hyperspectral imaging.

机构信息

State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.

出版信息

J Sci Food Agric. 2020 Aug;100(10):3803-3811. doi: 10.1002/jsfa.10393. Epub 2020 May 25.

Abstract

BACKGROUND

The quality of fresh tea leaves after harvest determines, to some extent, the quality and price of commercial tea. A fast and accurate method to evaluate the quality of fresh tea leaves is required.

RESULTS

In this study, the potential of hyperspectral imaging in the range of 328-1115 nm for the rapid prediction of moisture, total nitrogen, crude fiber contents, and quality index value was investigated. Ninety samples of eight tea-leaf varieties and two picking standards were tested. Quantitative partial least squares regression (PLSR) models were established using a full spectrum, whereas multiple linear regression (MLR) models were developed using characteristic wavelengths selected by a successive projections algorithm (SPA) and competitive adaptive reweighted sampling. The results showed that the optimal SPA-MLR models for moisture, total nitrogen, crude fiber contents, and quality index value yielded optimal performance with coefficients of determination for prediction (R p) of 0.9357, 0.8543, 0.8188, 0.9168; root mean square error of 0.3437, 0.1097, 0.3795, 1.0358; and residual prediction deviation of 4.00, 2.56, 2.31, and 3.51, respectively.

CONCLUSION

The results suggested that the hyperspectral imaging technique coupled with chemometrics was a promising tool for the rapid and nondestructive measurement of tea-leaf quality, and had the potential to develop multispectral imaging systems for future online detection of tea-leaf quality. © 2020 Society of Chemical Industry.

摘要

背景

收获后鲜茶叶的质量在一定程度上决定了商品茶的质量和价格。因此,需要一种快速、准确的方法来评估鲜茶叶的质量。

结果

本研究探讨了 328-1115nm 范围内高光谱成像技术快速预测鲜茶叶水分、总氮、粗纤维含量和品质指数值的潜力。使用 90 个 8 个茶树品种和 2 个采摘标准的样本进行测试。采用全光谱建立了定量偏最小二乘回归(PLSR)模型,而采用连续投影算法(SPA)和竞争自适应重加权采样选择特征波长建立了多元线性回归(MLR)模型。结果表明,水分、总氮、粗纤维含量和品质指数值的最优 SPA-MLR 模型具有最佳的预测性能,预测决定系数(R p)分别为 0.9357、0.8543、0.8188、0.9168;预测均方根误差分别为 0.3437、0.1097、0.3795、1.0358;残差预测偏差分别为 4.00、2.56、2.31、3.51。

结论

结果表明,高光谱成像技术与化学计量学相结合是一种快速、无损测量茶叶质量的有前途的工具,并且有可能为未来的茶叶质量在线检测开发多光谱成像系统。© 2020 英国化学学会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验