Department of Population Health, New York University School of Medicine, New York, USA.
Division of General Internal Medicine, New York University School of Medicine, New York, USA.
Drug Alcohol Rev. 2020 Mar;39(3):205-208. doi: 10.1111/dar.13048.
This article examines the feasibility of leveraging Twitter to detect posts authored by people who use opioids (PWUO) or content related to opioid use disorder (OUD), and manually develop a multidimensional taxonomy of relevant tweets.
Twitter messages were collected between June and October 2017 (n = 23 827) and evaluated using an inductive coding approach. Content was then manually classified into two axes (n = 17 420): (i) user experience regarding accessing, using, or recovery from illicit opioids; and (ii) content categories (e.g. policies, medical information, jokes/sarcasm).
The most prevalent categories consisted of jokes or sarcastic comments pertaining to OUD, PWUOs or hypothetically using illicit opioids (63%), informational content about treatments for OUD, overdose prevention or accessing self-help groups (20%), and commentary about government opioid policy or news related to opioids (17%). Posts by PWUOs centered on identifying illicit sources for procuring opioids (i.e. online, drug dealers; 49%), symptoms and/or strategies to quell opioid withdrawal symptoms (21%), and combining illicit opioid use with other substances, such as cocaine or benzodiazepines (17%). State and public health experts infrequently posted content pertaining to OUD (1%).
Twitter offers a feasible approach to identify PWUO. Further research is needed to evaluate the efficacy of Twitter to disseminate evidence-based content and facilitate linkage to treatment and harm reduction services.
本文探讨了利用 Twitter 检测使用阿片类药物的人(PWUO)或与阿片类药物使用障碍(OUD)相关的内容的帖子的可行性,并手动开发相关推文的多维分类法。
在 2017 年 6 月至 10 月期间收集了 Twitter 消息(n = 23827),并使用归纳编码方法进行了评估。然后,将内容手动分类为两个轴(n = 17420):(i)用户在获取、使用或戒断非法阿片类药物方面的体验;和(ii)内容类别(例如政策、医疗信息、笑话/讽刺)。
最常见的类别包括与 OUD、PWUO 或假设使用非法阿片类药物有关的笑话或讽刺评论(63%)、关于 OUD 治疗、预防过量或获取自助小组的信息内容(20%)以及关于政府阿片类药物政策或与阿片类药物相关的新闻的评论(17%)。PWUO 的帖子主要集中在确定获取阿片类药物的非法来源(即在线、毒贩;49%)、识别阿片类药物戒断症状和/或策略(21%)以及将非法阿片类药物与其他物质(如可卡因或苯二氮䓬类药物)混合使用(17%)。州和公共卫生专家很少发布有关 OUD 的内容(1%)。
Twitter 提供了一种可行的方法来识别 PWUO。需要进一步研究来评估 Twitter 传播基于证据的内容和促进与治疗和减少伤害服务联系的效果。