Suppr超能文献

蛋白质在神经退行性疾病中的传递。

Protein transmission in neurodegenerative disease.

机构信息

Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.

The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Nat Rev Neurol. 2020 Apr;16(4):199-212. doi: 10.1038/s41582-020-0333-7. Epub 2020 Mar 23.

Abstract

Most neurodegenerative diseases are characterized by the intracellular or extracellular aggregation of misfolded proteins such as amyloid-β and tau in Alzheimer disease, α-synuclein in Parkinson disease, and TAR DNA-binding protein 43 in amyotrophic lateral sclerosis. Accumulating evidence from both human studies and disease models indicates that intercellular transmission and the subsequent templated amplification of these misfolded proteins are involved in the onset and progression of various neurodegenerative diseases. The misfolded proteins that are transferred between cells are referred to as 'pathological seeds'. Recent studies have made exciting progress in identifying the characteristics of different pathological seeds, particularly those isolated from diseased brains. Advances have also been made in our understanding of the molecular mechanisms that regulate the transmission process, and the influence of the host cell on the conformation and properties of pathological seeds. The aim of this Review is to summarize our current knowledge of the cell-to-cell transmission of pathological proteins and to identify key questions for future investigation.

摘要

大多数神经退行性疾病的特征是细胞内或细胞外聚集错误折叠的蛋白质,如阿尔茨海默病中的淀粉样β和tau,帕金森病中的α-突触核蛋白,以及肌萎缩侧索硬化症中的 TAR DNA 结合蛋白 43。来自人类研究和疾病模型的越来越多的证据表明,这些错误折叠蛋白质的细胞间传递和随后的模板扩增参与了各种神经退行性疾病的发病和进展。在细胞之间转移的错误折叠蛋白质被称为“病理性种子”。最近的研究在鉴定不同病理性种子的特征方面取得了令人兴奋的进展,特别是那些从患病大脑中分离出来的病理性种子。我们对调节传递过程的分子机制以及宿主细胞对病理性种子构象和性质的影响的理解也取得了进展。本综述的目的是总结我们目前对病理性蛋白细胞间传递的认识,并确定未来研究的关键问题。

相似文献

1
Protein transmission in neurodegenerative disease.
Nat Rev Neurol. 2020 Apr;16(4):199-212. doi: 10.1038/s41582-020-0333-7. Epub 2020 Mar 23.
3
Trends in the molecular pathogenesis and clinical therapeutics of common neurodegenerative disorders.
Int J Mol Sci. 2009 Jun 3;10(6):2510-2557. doi: 10.3390/ijms10062510.
8
Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders.
Ann Neurol. 2011 Oct;70(4):532-40. doi: 10.1002/ana.22615.
10
Is membrane homeostasis the missing link between inflammation and neurodegenerative diseases?
Cell Mol Life Sci. 2015 Dec;72(24):4795-805. doi: 10.1007/s00018-015-2038-4. Epub 2015 Sep 24.

引用本文的文献

1
Advancements in extracellular vesicle therapy for neurodegenerative diseases.
Explor Neuroprotective Ther. 2025;5. doi: 10.37349/ent.2025.1004104. Epub 2025 May 6.
2
Lysine-Targeting Inhibitors of Amyloidogenic Protein Aggregation: A Promise for Neurodegenerative Proteinopathies.
JACS Au. 2025 Aug 11;5(8):3680-3700. doi: 10.1021/jacsau.5c00269. eCollection 2025 Aug 25.
3
The Multifaceted Role of Extracellular Vesicles in Alzheimer's Disease.
J Neurochem. 2025 Aug;169(8):e70209. doi: 10.1111/jnc.70209.
4
Design of Ig-like binders targeting α-synuclein fibril for mitigating its pathological activities.
Nat Commun. 2025 Aug 9;16(1):7368. doi: 10.1038/s41467-025-62755-1.
6
Spatiotemporally Resolved Profiling of Protein Movement by TransitID.
Methods Mol Biol. 2025;2953:243-260. doi: 10.1007/978-1-0716-4694-6_16.
7
The Neurotoxic Properties of α-synuclein Polymorphs.
Exp Neurobiol. 2025 Jun 30;34(3):87-94. doi: 10.5607/en25016.
8
The expanding repertoire of ESCRT functions in cell biology and disease.
Nature. 2025 Jun 25. doi: 10.1038/s41586-025-08950-y.
9
Driving Therapeutic Innovation in Neurodegenerative Disease With Hydrogen Deuterium eXchange Mass Spectrometry.
Mol Cell Proteomics. 2025 Jun 20;24(8):101017. doi: 10.1016/j.mcpro.2025.101017.
10
C-reactive protein: the nexus between inflammation and protein misfolding diseases.
Front Immunol. 2025 Jun 4;16:1612703. doi: 10.3389/fimmu.2025.1612703. eCollection 2025.

本文引用的文献

1
Novel tau filament fold in corticobasal degeneration.
Nature. 2020 Apr;580(7802):283-287. doi: 10.1038/s41586-020-2043-0. Epub 2020 Feb 12.
2
Posttranslational Modifications Mediate the Structural Diversity of Tauopathy Strains.
Cell. 2020 Feb 20;180(4):633-644.e12. doi: 10.1016/j.cell.2020.01.027. Epub 2020 Feb 6.
3
Human tau pathology transmits glial tau aggregates in the absence of neuronal tau.
J Exp Med. 2020 Feb 3;217(2). doi: 10.1084/jem.20190783.
5
Aβ-induced acceleration of Alzheimer-related τ-pathology spreading and its association with prion protein.
Acta Neuropathol. 2019 Dec;138(6):913-941. doi: 10.1007/s00401-019-02053-5. Epub 2019 Aug 14.
6
Aβ and tau prion-like activities decline with longevity in the Alzheimer's disease human brain.
Sci Transl Med. 2019 May 1;11(490). doi: 10.1126/scitranslmed.aat8462.
7
Harnessing Immunoproteostasis to Treat Neurodegenerative Disorders.
Neuron. 2019 Mar 20;101(6):1003-1015. doi: 10.1016/j.neuron.2019.02.027.
8
Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules.
Nature. 2019 Apr;568(7752):420-423. doi: 10.1038/s41586-019-1026-5. Epub 2019 Mar 20.
10
The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans.
Science. 2019 Feb 22;363(6429):880-884. doi: 10.1126/science.aav2546. Epub 2019 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验