National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266200, PR China.
National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266200, PR China.
Mater Sci Eng C Mater Biol Appl. 2020 May;110:110717. doi: 10.1016/j.msec.2020.110717. Epub 2020 Feb 3.
Considering the structural complexity of the native artery wall and the limitations of current treatment strategies, developing a biomimetic tri-layer tissue-engineered vascular graft is a major developmental direction of vascular tissue regeneration. Biodegradable polymers exhibit adequate mechanical characteristics and feasible operability, showing potential prospects in the construction of tissue engineering scaffold. Herein, we present a bio-inspired tri-layer tubular graft using biodegradable polymers to simulate natural vascular architecture. The inner layer made of polycaprolactone (PCL) nanofiber possesses high tensile strength and contributed to endothelial cell adhesion and proliferation. The middle layer consisted of poly(lactic-co-glycolide) (PLGA) with a three-dimensional porous structure is appropriate for vascular smooth muscle cells (SMCs) penetration. The polyurethane (PU) was selected to be the outer layer, aiming to hold the entire tubular structure, suggesting superior mechanical properties and ideal biocompatibility. Adhesion between independent layers is achieved by thermal crosslinking. The compliance, burst pressure and suture retention force of the tubular scaffold were 2.50 ± 1.60%, 2737.73 ± 583.41 mmHg and 13.06 ± 1.89 N, respectively. The in vivo study of subcutaneous implantation for 8 weeks demonstrated the biomimetic tri-layer vascular graft could maintain intimal integrity, cell infiltration, collagen deposition and scaffold biodegradation. Overall, the biomimetic tri-layer vascular graft promises to be a potential candidate for vascular replacement and regeneration.
考虑到天然动脉壁的结构复杂性和当前治疗策略的局限性,开发仿生三层组织工程血管移植物是血管组织再生的主要发展方向。可生物降解聚合物具有足够的机械特性和可行的操作性,在组织工程支架的构建中显示出潜在的前景。在这里,我们提出了一种使用可生物降解聚合物模拟天然血管结构的仿生三层管状移植物。由聚己内酯 (PCL) 纳米纤维制成的内层具有较高的拉伸强度,有利于内皮细胞的黏附和增殖。具有三维多孔结构的聚乳酸-共-羟基乙酸 (PLGA) 组成的中层适合血管平滑肌细胞 (SMC) 的渗透。选择聚氨酯 (PU) 作为外层,旨在保持整个管状结构,具有优异的机械性能和理想的生物相容性。独立层之间的黏附通过热交联实现。管状支架的顺应性、爆破压力和缝线保持力分别为 2.50 ± 1.60%、2737.73 ± 583.41mmHg 和 13.06 ± 1.89N。皮下植入 8 周的体内研究表明,仿生三层血管移植物能够维持内膜完整性、细胞浸润、胶原沉积和支架降解。总的来说,仿生三层血管移植物有望成为血管替代和再生的潜在候选物。
Mater Sci Eng C Mater Biol Appl. 2020-2-3
Mater Sci Eng C Mater Biol Appl. 2017-8-17
Int J Biol Macromol. 2017-12-13
J Biomater Sci Polym Ed. 2020-3
Interact Cardiovasc Thorac Surg. 2015-6
Int J Nanomedicine. 2025-6-14
Mater Today Bio. 2024-11-10
Biomimetics (Basel). 2022-11-14
Front Cardiovasc Med. 2022-6-24