Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, California 90095-1569.
Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, California 90095-1569; Department of Molecular and Medical Pharmacology and Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095.
J Biol Chem. 2020 May 1;295(18):6023-6042. doi: 10.1074/jbc.RA119.012420. Epub 2020 Mar 23.
Coenzyme Q (Q ) is a vital lipid component of the electron transport chain that functions in cellular energy metabolism and as a membrane antioxidant. In the yeast , deletion mutants are respiratory-incompetent, sensitive to lipid peroxidation stress, and unable to synthesize Q The yeast deletion mutant is also respiratory-deficient and sensitive to lipid peroxidation, yet it continues to produce Q at an impaired rate. Thus, Coq10 is required for the function of Q in respiration and as an antioxidant and is believed to chaperone Q from its site of synthesis to the respiratory complexes. In several fungi, Coq10 is encoded as a fusion polypeptide with Coq11, a recently identified protein of unknown function required for efficient Q biosynthesis. Because "fused" proteins are often involved in similar biochemical pathways, here we examined the putative functional relationship between Coq10 and Coq11 in yeast. We used plate growth and Seahorse assays and LC-MS/MS analysis to show that deletion rescues respiratory deficiency, sensitivity to lipid peroxidation, and decreased Q biosynthesis of the Δ mutant. Additionally, immunoblotting indicated that yeast Δ mutants accumulate increased amounts of certain Coq polypeptides and display a stabilized CoQ synthome. These effects suggest that Coq11 modulates Q biosynthesis and that its absence increases mitochondrial Q content in the ΔΔ double mutant. This augmented mitochondrial Q content counteracts the respiratory deficiency and lipid peroxidation sensitivity phenotypes of the Δ mutant. This study further clarifies the intricate connection between Q biosynthesis, trafficking, and function in mitochondrial metabolism.
辅酶 Q(Q)是电子传递链中的重要脂质成分,它在细胞能量代谢中发挥作用,并作为膜抗氧化剂。在酵母中,缺失突变体是呼吸缺陷的,对脂质过氧化应激敏感,并且无法合成 Q。酵母中的缺失突变体也是呼吸缺陷和对脂质过氧化敏感,但它继续以受损的速度合成 Q。因此,Coq10 是 Q 在呼吸和抗氧化中的功能所必需的,并且被认为是将 Q 从其合成部位递送到呼吸复合物的伴侣。在几种真菌中,Coq10 被编码为与 Coq11 的融合多肽,Coq11 是一种最近发现的具有未知功能的蛋白质,是有效合成 Q 所必需的。因为“融合”蛋白通常涉及相似的生化途径,所以在这里我们研究了酵母中 Coq10 和 Coq11 之间的假定功能关系。我们使用平板生长和 Seahorse 测定以及 LC-MS/MS 分析表明,Coq11 缺失挽救了 Δ 突变体的呼吸缺陷、对脂质过氧化的敏感性以及 Q 生物合成的减少。此外,免疫印迹表明,酵母 Δ 突变体积累了更多的特定 Coq 多肽,并显示出稳定的 CoQ 合成酶组。这些效应表明 Coq11 调节 Q 的生物合成,并且其缺失增加了 ΔΔ 双突变体中线粒体 Q 的含量。这种增加的线粒体 Q 含量抵消了 Δ 突变体的呼吸缺陷和脂质过氧化敏感性表型。这项研究进一步阐明了 Q 生物合成、运输和在线粒体代谢中的功能之间的复杂联系。