Mi Yongsheng, Cheng Hong-Bo, Chu Hongqian, Zhao Jian, Yu Mingming, Gu Zhanjun, Zhao Yuliang, Li Lele
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China . Email:
Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China.
Chem Sci. 2019 Oct 18;10(44):10231-10239. doi: 10.1039/c9sc03524a. eCollection 2019 Nov 28.
The precise control of singlet oxygen (O) generation is in great demand for biological studies and precision medicine. Here, a nanoarchitecture is designed and synthesized for generating O in a dual NIR light-programmable manner, while shifting to the therapeutic window. The nanoarchitecture is constructed by controlled synthesis of mesoporous silica-coated upconversion nanoparticles (UCNPs), wherein the porphyrin photosensitizers (PSs) are covalently embedded inside the silica walls while NIR (808 nm)-responsive diarylethene (DAE) photochromic switches are loaded in the nanopores. Upon irradiation with 980 nm NIR light, the UCNP core absorbs low energy photons and transfers energy to the PSs in the silica wall, leading to efficient O generation. Furthermore, this 980 nm NIR light photosensitized activity can be remotely controlled by irradiation with a distinct NIR wavelength (808 nm). The O generation is inhibited when the DAE installed in the nanopores is in the closed form, whereas irradiation of the nanoconstruct with 808 NIR light leads to the transformation of DAE to the open form, and thus enabling full recovery of the 980 nm NIR light excited O generation capability. The NIR light-mediated on-demand "activation" of the nanoarchitecture for bioimaging and controllable photodynamic therapy is further demonstrated and .
对于生物学研究和精准医学而言,对单线态氧(O)生成的精确控制有着巨大需求。在此,设计并合成了一种纳米结构,用于以双近红外光可编程的方式生成O,同时转移至治疗窗口。该纳米结构通过可控合成介孔二氧化硅包覆的上转换纳米粒子(UCNPs)构建而成,其中卟啉光敏剂(PSs)共价嵌入二氧化硅壁内,而近红外(808 nm)响应的二芳基乙烯(DAE)光致变色开关负载在纳米孔中。在用980 nm近红外光照射时,UCNP核心吸收低能光子并将能量转移至二氧化硅壁中的PSs,从而高效生成O。此外,这种980 nm近红外光的光敏活性可通过用不同的近红外波长(808 nm)照射进行远程控制。当纳米孔中安装的DAE处于闭合形式时,O的生成受到抑制,而用808 nm近红外光照射该纳米结构会导致DAE转变为开放形式,从而使980 nm近红外光激发的O生成能力完全恢复。进一步证明了近红外光介导的纳米结构用于生物成像和可控光动力治疗的按需“激活”。