Liang Gemeng, Wu Zhibin, Didier Christophe, Zhang Wenchao, Cuan Jing, Li Baohua, Ko Kuan-Yu, Hung Po-Yang, Lu Cheng-Zhang, Chen Yuanzhen, Leniec Grzegorz, Kaczmarek Sławomir Maksymilian, Johannessen Bernt, Thomsen Lars, Peterson Vanessa K, Pang Wei Kong, Guo Zaiping
Faculty of Engineering, Institute for Superconducting & Electronic Materials, University of Wollongong, Wollongong, NSW, Australia.
Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, Sydney, NSW, Australia.
Angew Chem Int Ed Engl. 2020 Jun 22;59(26):10594-10602. doi: 10.1002/anie.202001454. Epub 2020 Apr 15.
Spinel LiNi Mn O (LNMO) is a promising cathode candidate for the next-generation high energy-density lithium-ion batteries (LIBs). Unfortunately, the application of LNMO is hindered by its poor cycle stability. Now, site-selectively doped LNMO electrode is prepared with exceptional durability. In this work, Mg is selectively doped onto both tetrahedral (8a) and octahedral (16c) sites in the Fd m structure. This site-selective doping not only suppresses unfavorable two-phase reactions and stabilizes the LNMO structure against structural deformation, but also mitigates the dissolution of Mn during cycling. Mg-doped LNMOs exhibit extraordinarily stable electrochemical performance in both half-cells and prototype full-batteries with novel TiNb O counter-electrodes. This work pioneers an atomic-doping engineering strategy for electrode materials that could be extended to other energy materials to create high-performance devices.
尖晶石LiNiMn₂O₄(LNMO)是下一代高能量密度锂离子电池(LIBs)极具潜力的阴极候选材料。不幸的是,LNMO的应用因其较差的循环稳定性而受到阻碍。现在,通过位点选择性掺杂制备的LNMO电极具有出色的耐久性。在这项工作中,Mg被选择性地掺杂到Fd3m结构的四面体(8a)和八面体(16c)位点上。这种位点选择性掺杂不仅抑制了不利的两相反应,并使LNMO结构在结构变形时保持稳定,还减轻了循环过程中Mn的溶解。Mg掺杂的LNMO在具有新型TiNb₂O₅对电极的半电池和原型全电池中均表现出极其稳定的电化学性能。这项工作开创了一种用于电极材料的原子掺杂工程策略,该策略可扩展到其他能量材料以制造高性能器件。