Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States.
J Am Chem Soc. 2020 Apr 15;142(15):7235-7242. doi: 10.1021/jacs.0c03165. Epub 2020 Apr 1.
Challenges in the assembly of glycosidic bonds in oligosaccharides and glycoconjugates pose a bottleneck in enabling the remarkable promise of advances in the glycosciences. Here, we report a strategy that applies unique features of highly electrophilic boron catalysts, such as tris(pentafluorophenyl)borane, in addressing a number of the current limitations of methods in glycoside synthesis. This approach utilizes glycosyl fluoride donors and silyl ether acceptors while tolerating the Lewis basic environment found in carbohydrates. The method can be carried out at room temperature using air- and moisture-stable forms of the catalyst, with loadings as low as 0.5 mol %. These characteristics enable a wide array of glycosylation patterns to be accessed, including all C1-C2 stereochemical relationships in the glucose, mannose, and rhamnose series. This method allows one-pot, iterative glycosylations to generate oligosaccharides directly from monosaccharide building blocks. These advances enable the rapid and experimentally straightforward preparation of complex oligosaccharide units from simple building blocks.
寡糖和糖缀合物中糖苷键的组装面临挑战,这是实现糖科学显著进展的瓶颈。在这里,我们报告了一种策略,该策略应用了高亲电硼催化剂(如三(五氟苯基)硼烷)的独特特性,解决了糖苷合成方法目前存在的许多限制。该方法利用糖基氟化物供体和硅醚受体,同时耐受碳水化合物中存在的路易斯碱性环境。该方法可以在室温下使用空气和水分稳定的催化剂形式进行,催化剂用量低至 0.5 mol%。这些特性使得可以获得广泛的糖基化模式,包括葡萄糖、甘露糖和鼠李糖系列中的所有 C1-C2 立体化学关系。该方法允许通过一锅法、迭代糖基化作用直接从单糖构建块生成寡糖。这些进展使得可以从简单的构建块快速且实验上直接制备复杂的寡糖单元。