Suppr超能文献

基于模板的制备方法,使用低浓度磁致凝胶化甲基丙烯酰化明胶(GelMA)微纤维构建具有空间组织的 3D 生物活性结构。

Template-based fabrication of spatially organized 3D bioactive constructs using magnetic low-concentration gelation methacrylate (GelMA) microfibers.

机构信息

Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, 100081, People's Republic of China.

Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, 100081, People's Republic of China.

出版信息

Soft Matter. 2020 Apr 29;16(16):3902-3913. doi: 10.1039/c9sm01945f.

Abstract

Low concentrations of gelatin methacrylate (GelMA) microfibers are more favorable for cellular activity compared with high concentrations. However, applying low-concentration GelMA microfibers as building blocks for higher-order cellular assembly remains challenging owing to their poor mechanical properties. Herein, we report a new template-based method to solve this problem. GelMA microfibers (5%, w/v) containing magnetic nanoparticles were synthesized by a microfluidic spinning method. A 9 × 9 micropillar array surrounded by a magnetic substrate was constructed to form 8 × 8 microgaps arranged in a crisscross pattern as a magnetic template. In DMEM solution, magnetic attraction facilitated efficient arrangement of the microfibers according to the template with micron assembly accuracy, with a microgrid-like construct (microGC) generated after removing all micropillars. MicroGCs were shown to effectively support the activities of surface seeded or encapsulated cells and be flexibly constructed with various organized spatial patterns. Owing to the low mechanical property requirements of assembled microfibers and the easy-to-implement operation, the proposed method provides a versatile pathway for the assembly of various microfluidic spun microfibers. Furthermore, the resulting 3D microgrid-like cellular constructs with organized spatiotemporal composition offer a convenient platform for the study of tissue engineering.

摘要

低浓度的明胶甲基丙烯酸酯(GelMA)微纤维比高浓度更有利于细胞活性。然而,由于其机械性能较差,将低浓度的 GelMA 微纤维用作更高阶细胞组装的构建块仍然具有挑战性。在此,我们报告了一种新的基于模板的方法来解决这个问题。通过微流控纺丝方法合成了含有磁性纳米颗粒的 5%(w/v)GelMA 微纤维。构建了一个由磁性基底包围的 9×9 微柱阵列,以形成 8×8 交错排列的微间隙作为磁性模板。在 DMEM 溶液中,磁引力有助于根据模板以微米级的组装精度有效地排列微纤维,去除所有微柱后会生成微网格状结构(microGC)。微 GC 被证明可以有效地支持表面接种或包封细胞的活性,并可以灵活地构建各种有组织的空间图案。由于组装微纤维的机械性能要求较低,并且操作简单易行,因此所提出的方法为各种微流控纺丝微纤维的组装提供了一种通用途径。此外,具有组织时空组成的所得 3D 微网格状细胞结构为组织工程研究提供了一个方便的平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验