Suppr超能文献

Aβ42 赖氨酸 16 乙酰化破坏淀粉样蛋白形成。

Acetylation of Aβ42 at Lysine 16 Disrupts Amyloid Formation.

机构信息

Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States.

Department of Physics, Michigan Technological University, Houghton, Michigan 49931, United States.

出版信息

ACS Chem Neurosci. 2020 Apr 15;11(8):1178-1191. doi: 10.1021/acschemneuro.0c00069. Epub 2020 Apr 2.

Abstract

The residue lysine 28 (K28) is known to form an important salt bridge that stabilizes the Aβ amyloid structure, and acetylation of lysine 28 (K28Ac) slows the Aβ42 fibrillization rate but does not affect fibril morphology. On the other hand, acetylation of lysine 16 (K16Ac) residue greatly diminishes the fibrillization property of Aβ42 peptide and also affects its toxicity. This is due to the fact that lysine 16 acetylated amyloid beta peptide forms amorphous aggregates instead of amyloid fibrils. This is likely a result of increased hydrophobicity of the K16-A21 region due to K16 acetylation, as confirmed by molecular dynamic simulation studies. The calculated results show that the hydrophobic patches of aggregates from acetylated peptides were different when compared to wild-type (WT) peptide. K16Ac and double acetylated (KKAc) peptide aggregates show significantly higher cytotoxicity compared to the WT or K28Ac peptide aggregates alone. However, the heterogeneous mixture of WT and acetylated Aβ42 peptide aggregates exhibited higher free radical formation as well as cytotoxicity, suggesting dynamic interactions between different species could be a critical contributor to Aβ pathology.

摘要

赖氨酸残基 28(K28)已知形成稳定 Aβ 淀粉样结构的重要盐桥,赖氨酸 28(K28Ac)的乙酰化会降低 Aβ42 的纤维化速率,但不影响纤维形态。另一方面,赖氨酸 16(K16Ac)残基的乙酰化大大降低了 Aβ42 肽的纤维化特性,并影响其毒性。这是因为赖氨酸 16 乙酰化的淀粉样β肽形成无定形聚集体而不是淀粉样纤维。这可能是由于 K16 乙酰化导致 K16-A21 区域的疏水性增加,分子动力学模拟研究证实了这一点。计算结果表明,与野生型(WT)肽相比,乙酰化肽聚集体的疏水性斑块不同。与 WT 或 K28Ac 肽聚集体相比,K16Ac 和双乙酰化(KKAc)肽聚集体显示出明显更高的细胞毒性。然而,WT 和乙酰化 Aβ42 肽聚集体的不均匀混合物表现出更高的自由基形成和细胞毒性,这表明不同物种之间的动态相互作用可能是 Aβ 病理学的一个关键贡献因素。

相似文献

1
Acetylation of Aβ42 at Lysine 16 Disrupts Amyloid Formation.
ACS Chem Neurosci. 2020 Apr 15;11(8):1178-1191. doi: 10.1021/acschemneuro.0c00069. Epub 2020 Apr 2.
2
Acetylation of Aβ Alters Aggregation in the Presence and Absence of Lipid Membranes.
ACS Chem Neurosci. 2020 Jan 15;11(2):146-161. doi: 10.1021/acschemneuro.9b00483. Epub 2019 Dec 27.
3
Site-specific effects of peptide lipidation on beta-amyloid aggregation and cytotoxicity.
J Biol Chem. 2007 Dec 21;282(51):36987-97. doi: 10.1074/jbc.M702146200. Epub 2007 Aug 9.
5
Lysine Acetylation Changes the Mechanism of Aβ25-35 Peptide Binding and Dimerization in the DMPC Bilayer.
ACS Chem Neurosci. 2023 Feb 1;14(3):494-505. doi: 10.1021/acschemneuro.2c00722. Epub 2023 Jan 19.
9
Site-specific glycation of Aβ1-42 affects fibril formation and is neurotoxic.
J Biol Chem. 2019 May 31;294(22):8806-8818. doi: 10.1074/jbc.RA118.006846. Epub 2019 Apr 17.
10
Impact of Cu(II) Binding on Structures and Dynamics of Aβ Monomer and Dimer: Molecular Dynamics Study.
ACS Chem Neurosci. 2016 Oct 19;7(10):1348-1363. doi: 10.1021/acschemneuro.6b00109. Epub 2016 Aug 16.

引用本文的文献

1
Structural polymorphism of ALECT2 amyloid fibrils revealed by cryo-EM.
bioRxiv. 2025 Jul 18:2025.07.15.664973. doi: 10.1101/2025.07.15.664973.
4
The role of altered protein acetylation in neurodegenerative disease.
Front Aging Neurosci. 2023 Jan 4;14:1025473. doi: 10.3389/fnagi.2022.1025473. eCollection 2022.
5
A Chemical Mutagenesis Approach to Insert Post-translational Modifications in Aggregation-Prone Proteins.
ACS Chem Neurosci. 2022 Jun 15;13(12):1714-1718. doi: 10.1021/acschemneuro.2c00077. Epub 2022 May 24.
7
Consequences of post-translational modifications on amyloid proteins as revealed by protein semisynthesis.
Curr Opin Chem Biol. 2021 Oct;64:76-89. doi: 10.1016/j.cbpa.2021.05.007. Epub 2021 Jun 25.
8
The Diagnostic Potential of Amyloidogenic Proteins.
Int J Mol Sci. 2021 Apr 16;22(8):4128. doi: 10.3390/ijms22084128.

本文引用的文献

1
Amyloid-β oligomers have a profound detergent-like effect on lipid membrane bilayers, imaged by atomic force and electron microscopy.
J Biol Chem. 2019 May 10;294(19):7566-7572. doi: 10.1074/jbc.AC118.007195. Epub 2019 Apr 3.
2
Probing transient non-native states in amyloid beta fiber elongation by NMR.
Chem Commun (Camb). 2019 Apr 11;55(31):4483-4486. doi: 10.1039/c9cc01067j.
3
Functions and mechanisms of non-histone protein acetylation.
Nat Rev Mol Cell Biol. 2019 Mar;20(3):156-174. doi: 10.1038/s41580-018-0081-3.
4
Neuronal Aβ42 is enriched in small vesicles at the presynaptic side of synapses.
Life Sci Alliance. 2018 Jun 14;1(3):e201800028. doi: 10.26508/lsa.201800028. eCollection 2018 Jun.
5
Tau Kinetics in Neurons and the Human Central Nervous System.
Neuron. 2018 Mar 21;97(6):1284-1298.e7. doi: 10.1016/j.neuron.2018.02.015.
6
Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics.
Chem Rev. 2018 Feb 14;118(3):1216-1252. doi: 10.1021/acs.chemrev.7b00181. Epub 2018 Feb 6.
7
Trial of Solanezumab for Mild Dementia Due to Alzheimer's Disease.
N Engl J Med. 2018 Jan 25;378(4):321-330. doi: 10.1056/NEJMoa1705971.
8
Post-translationally modified human lens crystallin fragments show aggregation .
Biochem Biophys Rep. 2017 Feb 20;10:94-131. doi: 10.1016/j.bbrep.2017.01.011. eCollection 2017 Jul.
9
Oxidative toxicity in diabetes and Alzheimer's disease: mechanisms behind ROS/ RNS generation.
J Biomed Sci. 2017 Sep 19;24(1):76. doi: 10.1186/s12929-017-0379-z.
10
Oxidative Stress in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Applications.
Oxid Med Cell Longev. 2017;2017:2525967. doi: 10.1155/2017/2525967. Epub 2017 Jul 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验