From the School of Biological Sciences,
the Brain Research New Zealand Rangahau Roro Aotearoa and Centre for Brain Research, Auckland 1010, and.
J Biol Chem. 2019 May 31;294(22):8806-8818. doi: 10.1074/jbc.RA118.006846. Epub 2019 Apr 17.
Aβ1-42 is involved in Alzheimer's disease (AD) pathogenesis and is prone to glycation, an irreversible process where proteins accumulate advanced glycated end products (AGEs). -(Carboxyethyl)lysine (CEL) is a common AGE associated with AD patients and occurs at either Lys-16 or Lys-28 of Aβ1-42. Methyglyoxal is commonly used for the unspecific glycation of Aβ1-42, which results in a complex mixture of AGE-modified peptides and makes interpretation of a causative AGE at a specific amino acid residue difficult. We address this issue by chemically synthesizing defined CEL modifications on Aβ1-42 at Lys-16 (Aβ-CEL16), Lys-28 (Aβ-CEL28), and Lys-16 and -28 (Aβ-CEL16&28). We demonstrated that double-CEL glycations at Lys-16 and Lys-28 of Aβ1-42 had the most profound impact on the ability to form amyloid fibrils. predictions indicated that Aβ-CEL16&28 had a substantial decrease in free energy change, which contributes to fibril destabilization, and a increased aggregation rate. Single-CEL glycations at Lys-28 of Aβ1-42 had the least impact on fibril formation, whereas CEL glycations at Lys-16 of Aβ1-42 delayed fibril formation. We also tested these peptides for neuronal toxicity and mitochondrial function on a retinoic acid-differentiated SH-SY5Y human neuroblastoma cell line (RA-differentiated SH-SY5Y). Only Aβ-CEL16 and Aβ-CEL28 were neurotoxic, possibly through a nonmitochondrial pathway, whereas Aβ-CEL16&28 showed no neurotoxicity. Interestingly, Aβ-CEL16&28 had depolarized the mitochondrial membrane potential, whereas Aβ-CEL16 had increased mitochondrial respiration at complex II. These results may indicate mitophagy or an alternate route of metabolism, respectively. Therefore, our results provides insight into potential therapeutic approaches against neurotoxic CEL-glycated Aβ1-42.
β淀粉样蛋白 1-42(Aβ1-42)参与阿尔茨海默病(AD)的发病机制,容易发生糖基化,这是一种蛋白质积累晚期糖基化终产物(AGEs)的不可逆过程。(羧乙基)赖氨酸(CEL)是一种与 AD 患者相关的常见 AGE,发生在 Aβ1-42 的赖氨酸 16 或赖氨酸 28 上。甲基乙二醛通常用于 Aβ1-42 的非特异性糖基化,导致 AGE 修饰肽的复杂混合物,使得难以在特定氨基酸残基上解释引起疾病的 AGE。我们通过在 Aβ1-42 的赖氨酸 16(Aβ-CEL16)、赖氨酸 28(Aβ-CEL28)和赖氨酸 16 和 -28(Aβ-CEL16&28)上化学合成定义明确的 CEL 修饰来解决这个问题。我们证明了 Aβ1-42 赖氨酸 16 和赖氨酸 28 上的双 CEL 糖基化对形成淀粉样纤维的能力有最深远的影响。预测表明,Aβ-CEL16&28 的自由能变化有显著减少,这有助于纤维不稳定,并增加聚集率。Aβ1-42 赖氨酸 28 上的单 CEL 糖基化对纤维形成的影响最小,而 Aβ1-42 赖氨酸 16 上的 CEL 糖基化则延迟了纤维形成。我们还在维甲酸分化的 SH-SY5Y 人神经母细胞瘤细胞系(RA 分化的 SH-SY5Y)上测试了这些肽的神经元毒性和线粒体功能。只有 Aβ-CEL16 和 Aβ-CEL28 具有神经毒性,可能通过非线粒体途径,而 Aβ-CEL16&28 则没有神经毒性。有趣的是,Aβ-CEL16&28 使线粒体膜电位去极化,而 Aβ-CEL16 则增加了线粒体 II 复合物的呼吸作用。这些结果可能分别表明自噬或替代代谢途径。因此,我们的结果为针对神经毒性 CEL 糖基化 Aβ1-42 的潜在治疗方法提供了深入了解。