National Institute of Water and Atmospheric Research (NIWA), Hamilton, New Zealand.
National Institute of Water and Atmospheric Research (NIWA), Hamilton, New Zealand.
Sci Total Environ. 2020 Jun 20;722:137850. doi: 10.1016/j.scitotenv.2020.137850. Epub 2020 Mar 19.
The effects of climate warming on soil erosion in upland ecosystems will be disproportionately higher than for lowlands due to steeper topography and higher predicted rainfall. Soil erosion may be enhanced by climate warming and upslope shifts in agriculture as conditions for plant growth improve. Identification of eroded-soil sources will inform land management practices that mitigate soil loss and impacts on aquatic receiving environments. Isotopic signatures of plant-derived fatty acid (FA) soil biomarkers can discriminate sediment sources and will detect shifts in land use and natural vegetation toposequences. Accounting for these isotopic shifts requires knowledge of the magnitude and time scale for transition in biomarker signatures. We examined a 30-year chronosequence to quantify the transition in isotopic values of bulk nitrogen, carbon and FA biomarkers following a change from pine forestry to pastoral agriculture in the central North Island of New Zealand. We found the transition in soil biomarker isotopic values was complete within 6 years, with substantial increases in both organic carbon (1% yr) and total N (0.13% yr) of top soils. Subsequent changes were negligible (i.e., <0.04% yr), indicative of a new steady state. Similar patterns were observed in the isotopic signatures of bulk δC and δN values and FA δC values (i.e., ±0.5-0.6‰ yr). Bulk C and N properties and the FAs C14:0, C16:0, C18:2, C24:0 and C26:0 displayed clear transitions from harvested pine to mature pasture. We found evidence that mycorrhizal fungi could disperse and influence soil FA isotopic signatures. This highlights the need to consider both harvested and mature forests in source-tracing studies. Finally, our study shows that near-instantaneous changes in land use associated with agriculture can alter the isotopic signatures of plant biomarkers in soils. This produces a step change that can be readily detected in sedimentary records.
气候变暖对旱地生态系统土壤侵蚀的影响将比低地更为显著,因为旱地的地形更为陡峭,预计降雨量也更高。随着植物生长条件的改善,气候变暖以及农业向山坡上方的转移可能会加剧土壤侵蚀。识别侵蚀土壤的来源将为减轻土壤流失和对水生接收环境影响的土地管理实践提供信息。植物衍生脂肪酸 (FA) 土壤生物标志物的同位素特征可区分沉积物来源,并可检测土地利用和自然植被地形序列的变化。要考虑这些同位素变化,就需要了解生物标志物特征转变的幅度和时间尺度。我们研究了一个 30 年的时间序列,以量化新西兰北岛中部从松林到畜牧业的土地利用变化后,土壤中氮、碳和 FA 生物标志物的同位素值的转变。我们发现,土壤生物标志物同位素值的转变在 6 年内完成,表土中有机碳(1%yr)和总氮(0.13%yr)都有大幅增加。随后的变化微不足道(即,<0.04%yr),表明达到了新的稳定状态。在 bulk δC 和 δN 值以及 FA δC 值(即,±0.5-0.6‰yr)的同位素特征中也观察到了类似的模式。大块 C 和 N 特性以及 FA 的 C14:0、C16:0、C18:2、C24:0 和 C26:0 都显示出从收获的松木到成熟牧场的明显转变。我们有证据表明,菌根真菌可以扩散并影响土壤 FA 同位素特征。这凸显了在源追踪研究中需要同时考虑已收获和成熟的森林。最后,我们的研究表明,与农业相关的土地利用的快速变化会改变土壤中植物生物标志物的同位素特征。这会产生一个在沉积记录中很容易检测到的阶跃变化。