Suppr超能文献

通过各种 RO 膜预测有机物传质系数的基团贡献法。

Group Contribution Method to Predict the Mass Transfer Coefficients of Organics through Various RO Membranes.

机构信息

Department of Civil and Environmental Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States.

Trussell Technologies, Inc., San Diego, California 92075, United States.

出版信息

Environ Sci Technol. 2020 Apr 21;54(8):5167-5177. doi: 10.1021/acs.est.9b06170. Epub 2020 Apr 3.

Abstract

Reverse osmosis (RO) is a membrane technology that separates dissolved species from water. RO has been applied for the removal of chemical contaminants from water for potable reuse applications. The presence of a wide variety of influent chemical contaminants and the insufficient rejection of low-molecular-weight neutral organics by RO calls for the need to develop a model that predicts the rejection of various organics. In this study, we develop a group contribution method (GCM) to predict the mass transfer coefficients by fragmenting the structure of low-molecular-weight neutral organics into small parts that interact with the RO membrane. Overall, 54 organics including 26 halogenated and oxygenated alkanes, 8 alkenes, and 20 alkyl and halobenzenes were used to determine 39 parameters to calibrate for 6 different RO membranes, including 4 brackish water and 2 seawater membranes. Through six membranes, approximately 80% of calculated rejection was within an error goal (i.e., ±5%) from the experimental observation. To extend the GCM for a reference RO membrane, ESPA2-LD, 14 additional organics were included from the literature to calibrate nitrogen-containing functional groups of nitrosamine, nitriles, and amide compounds. Overall, 49 organics (72% of 68 compounds) from calibration and 7 compounds (87.5% of 8 compounds) from prediction were within the error goal.

摘要

反渗透(RO)是一种膜技术,可将溶解的物质与水分离。RO 已被应用于去除饮用水再利用应用中的水中的化学污染物。由于存在各种各样的进水化学污染物,以及 RO 对低分子量中性有机物的截留不足,因此需要开发一种模型来预测各种有机物的截留率。在这项研究中,我们开发了一种基团贡献法(GCM),通过将低分子量中性有机物的结构分解成与 RO 膜相互作用的小部分来预测传质系数。总体而言,使用了 54 种有机物,包括 26 种卤代和含氧烷烃、8 种烯烃和 20 种烷基和卤代苯,确定了 39 个参数来校准 6 种不同的 RO 膜,包括 4 种咸水膜和 2 种海水膜。通过这 6 种膜,大约 80%的计算截留率与实验观察值的误差在 5%以内。为了将 GCM 扩展到参考 RO 膜 ESPA2-LD,从文献中添加了 14 种额外的有机物来校准亚硝胺、腈和酰胺化合物中的含氮官能团。总体而言,来自校准的 49 种有机物(68 种化合物中的 72%)和来自预测的 7 种有机物(8 种化合物中的 87.5%)都在误差范围内。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验