Suppr超能文献

隐式微扰哈密顿量作为一类适用于机器学习的通用分子表示形式。

Implicitly perturbed Hamiltonian as a class of versatile and general-purpose molecular representations for machine learning.

作者信息

Alibakhshi Amin, Hartke Bernd

机构信息

Theoretical Chemistry, Institute for Physical Chemistry, Christian-Albrechts-University, Olshausenstr. 40, Kiel, Germany.

出版信息

Nat Commun. 2022 Mar 10;13(1):1245. doi: 10.1038/s41467-022-28912-6.

Abstract

Unraveling challenging problems by machine learning has recently become a hot topic in many scientific disciplines. For developing rigorous machine-learning models to study problems of interest in molecular sciences, translating molecular structures to quantitative representations as suitable machine-learning inputs play a central role. Many different molecular representations and the state-of-the-art ones, although efficient in studying numerous molecular features, still are suboptimal in many challenging cases, as discussed in the context of the present research. The main aim of the present study is to introduce the Implicitly Perturbed Hamiltonian (ImPerHam) as a class of versatile representations for more efficient machine learning of challenging problems in molecular sciences. ImPerHam representations are defined as energy attributes of the molecular Hamiltonian, implicitly perturbed by a number of hypothetic or real arbitrary solvents based on continuum solvation models. We demonstrate the outstanding performance of machine-learning models based on ImPerHam representations for three diverse and challenging cases of predicting inhibition of the CYP450 enzyme, high precision, and transferrable evaluation of non-covalent interaction energy of molecular systems, and accurately reproducing solvation free energies for large benchmark sets.

摘要

通过机器学习解决具有挑战性的问题最近已成为许多科学学科中的热门话题。为了开发严格的机器学习模型来研究分子科学中感兴趣的问题,将分子结构转化为合适的机器学习输入的定量表示起着核心作用。许多不同的分子表示以及最先进的表示,尽管在研究众多分子特征方面很有效,但在许多具有挑战性的情况下仍然不是最优的,正如本研究背景中所讨论的那样。本研究的主要目的是引入隐式微扰哈密顿量(ImPerHam)作为一类通用表示,以便更有效地对分子科学中的具有挑战性的问题进行机器学习。ImPerHam表示被定义为分子哈密顿量的能量属性,基于连续介质溶剂化模型,由许多假设的或实际的任意溶剂隐式微扰。我们展示了基于ImPerHam表示的机器学习模型在预测CYP450酶抑制、高精度以及分子系统非共价相互作用能的可转移评估这三个不同且具有挑战性的案例中的出色性能,以及准确再现大型基准集的溶剂化自由能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f526/8913769/8c7c106f96ee/41467_2022_28912_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验