College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
Microb Cell Fact. 2020 Mar 24;19(1):76. doi: 10.1186/s12934-020-01334-z.
Aspergillus niger is a filamentous fungus used for the majority of global citric acid production. Recent developments in genome editing now enable biotechnologists to engineer and optimize A. niger. Currently, however, genetic-leads for maximizing citric acid titers in industrial A. niger isolates is limited.
In this study, we try to engineer two citric acid A. niger production isolates, WT-D and D353, to serve as platform strains for future high-throughput genome engineering. Consequently, we used genome editing to simultaneously disrupt genes encoding the orotidine-5'-decarboxylase (pyrG) and non-homologous end-joining component (kusA) to enable use of the pyrG selection/counter selection system, and to elevate homologous recombination rates, respectively. During routine screening of these pyrG mutant strains, we unexpectedly observed a 2.17-fold increase in citric acid production when compared to the progenitor controls, indicating that inhibition of uridine/pyrimidine synthesis may increase citric acid titers. In order to further test this hypothesis, the pyrG gene was placed under the control of a tetracycline titratable cassette, which confirmed that reduced expression of this gene elevated citric acid titers in both shake flask and bioreactor fermentation. Subsequently, we conducted intracellular metabolomics analysis, which demonstrated that pyrG disruption enhanced the glycolysis flux and significantly improved abundance of citrate and its precursors.
In this study, we deliver two citric acid producing isolates which are amenable to high throughput genetic manipulation due to pyrG/kusA deletion. Strikingly, we demonstrate for the first time that A. niger pyrG is a promising genetic lead for generating citric acid hyper-producing strains. Our data support the hypothesis that uridine/pyrimidine biosynthetic pathway offer future avenues for strain engineering efforts.
黑曲霉是一种丝状真菌,用于全球大部分柠檬酸的生产。最近的基因组编辑技术的发展使生物技术人员能够对黑曲霉进行工程改造和优化。然而,目前用于最大限度提高工业黑曲霉分离株柠檬酸产量的遗传线索有限。
在这项研究中,我们试图对两个柠檬酸生产黑曲霉菌株 WT-D 和 D353 进行工程改造,作为未来高通量基因组工程的平台菌株。因此,我们使用基因组编辑同时敲除编码乳清酸 5'-脱羧酶(pyrG)和非同源末端连接组件(kusA)的基因,分别使能够使用 pyrG 选择/反选择系统和提高同源重组率。在这些 pyrG 突变菌株的常规筛选过程中,我们意外地观察到与亲本对照相比柠檬酸产量增加了 2.17 倍,表明抑制尿嘧啶/嘧啶合成可能会提高柠檬酸产量。为了进一步验证这一假设,将 pyrG 基因置于四环素可滴定盒的控制之下,这证实了该基因的表达降低会提高摇瓶和生物反应器发酵中的柠檬酸产量。随后,我们进行了细胞内代谢组学分析,表明 pyrG 缺失增强了糖酵解通量,并显著提高了柠檬酸及其前体的丰度。
在这项研究中,我们提供了两个柠檬酸生产菌株,由于 pyrG/kusA 的缺失,它们适合高通量遗传操作。引人注目的是,我们首次证明黑曲霉 pyrG 是生成柠檬酸高产菌株的有前途的遗传线索。我们的数据支持这样一种假设,即尿嘧啶/嘧啶生物合成途径为菌株工程提供了未来的途径。