Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, 1, Kawasumi, Mizuho-cho, Mizuho-Ku, Nagoya, 467-8601, Japan.
Pflugers Arch. 2020 Apr;472(4):481-494. doi: 10.1007/s00424-020-02362-9. Epub 2020 Mar 24.
Nutrient arteries provide the endosteal blood supply to maintain bone remodelling and energy metabolism. Here, we investigated the distribution and function of perivascular nerves in regulating the contractility of the tibial nutrient artery. Changes in artery diameter were measured using a video tracking system, while the perivascular innervation was investigated using fluorescence immunohistochemistry. Nerve-evoked phasic constrictions of nutrient arteries were suppressed by phentolamine (1 μM), an α-adrenoceptor antagonist, guanethidine (10 μM), a blocker of sympathetic transmission, or fluoxetine (10 μM), a serotonin (5-hydroxytryptamine, 5-HT) reuptake inhibitor. In arteries pretreated with guanethidine, residual nerve-evoked constrictions were abolished by a high concentration of propranolol (10 μM) that is known to inhibit 5-HT receptors, or ketanserin (100 nM), a 5-HT receptor antagonist, but not SB207216 (1 μM), an antagonist of 5-HT and 5-HT receptors. Bath-applied 5-HT (100 nM) induced arterial constriction that was suppressed by propranolol (10 μM) or ketanserin (100 nM). Nerve-evoked arterial constrictions were enhanced by spantide (1 μM), a substance P (SP) receptor antagonist, or L-nitro arginine (L-NA; 100 μM), an inhibitor of nitric oxide synthase (NOS). Immunohistochemistry revealed 5-HT-positive nerves running along the arteries that are distinct from perivascular sympathetic or substance P-positive primary afferent nerves. For the first time, functional serotonergic nerves are identified in the tibial nutrient artery of the guinea pig. Thus, it appears that tibial nutrient arterial calibre is regulated by the balance between sympathetic and serotonergic vasoconstrictor nerves and vasodilator afferent nerves that release substance P-stimulating endothelial nitric oxide (NO) release.
营养动脉为维持骨改建和能量代谢提供骨内膜血供。在这里,我们研究了血管周围神经在调节胫骨营养动脉收缩性中的分布和功能。使用视频跟踪系统测量动脉直径的变化,同时使用荧光免疫组织化学研究血管周围神经支配。用α-肾上腺素受体拮抗剂酚妥拉明(1 μM)、交感神经传递阻断剂胍乙啶(10 μM)或 5-羟色胺(5-HT)再摄取抑制剂氟西汀(10 μM)抑制营养动脉的神经诱发的时相性收缩。在用胍乙啶预处理的动脉中,用高浓度的普萘洛尔(已知抑制 5-HT 受体的 10 μM)或酮色林(5-HT 受体拮抗剂,100 nM)消除剩余的神经诱发的收缩,但不能用 SB207216(5-HT 和 5-HT 受体拮抗剂,1 μM)消除。局部应用 5-HT(100 nM)引起的动脉收缩被普萘洛尔(10 μM)或酮色林(100 nM)抑制。SP 受体拮抗剂 spantide(1 μM)或一氧化氮合酶抑制剂 L-硝基精氨酸(L-NA;100 μM)增强神经诱发的动脉收缩。免疫组织化学显示,5-HT 阳性神经沿动脉运行,与血管周围的交感或 P 物质阳性传入神经不同。首次在豚鼠胫骨营养动脉中鉴定出功能性 5-HT 能神经。因此,胫骨营养动脉的口径似乎受交感和 5-HT 血管收缩神经与释放 P 物质刺激内皮一氧化氮(NO)释放的血管舒张传入神经之间的平衡调节。