Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio.
UCLA Cardiac Arrhythmia Center, UCLA Health System, University of California Los Angeles, Los Angeles, California.
Am J Physiol Heart Circ Physiol. 2020 May 1;318(5):H1091-H1099. doi: 10.1152/ajpheart.00574.2019. Epub 2020 Mar 27.
The sympathetic nervous system modulates cardiac function by controlling key parameters such as chronotropy and inotropy. Sympathetic control of ventricular function occurs through extrinsic innervation arising from the stellate ganglia and thoracic sympathetic chain. In the healthy heart, sympathetic release of norepinephrine (NE) results in positive modulation of chronotropy, inotropy, and dromotropy, significantly increasing cardiac output. However, in the setting of myocardial infarction or injury, sympathetic activation persists, contributing to heart failure and increasing the risk of arrhythmias, including sudden cardiac death. Methodologies for detection of norepinephrine in cardiac tissue are limited. Present techniques rely on microdialysis for analysis by high-performance liquid chromatography coupled to electrochemical detection (HPLC-ED), radioimmunoassay, or other immunoassays, such as enzyme-linked immunosorbent assay (ELISA). Although significant information about the release and action of norepinephrine has been obtained with these methodologies, they are limited in temporal resolution, require large sample volumes, and provide results with a significant delay after sample collection (hours to weeks). In this study, we report a novel approach for measurement of interstitial cardiac norepinephrine, using minimally invasive, electrode-based, fast-scanning cyclic voltammetry (FSCV) applied in a beating porcine heart. The first multispatial and high temporal resolution, multichannel measurements of NE release in vivo are provided. Our data demonstrate rapid changes in interstitial NE profiles with regional differences in response to coronary ischemia, sympathetic nerve stimulation, and alterations in preload/afterload. Pharmacological, electrical, or surgical regulation of sympathetic neuronal control can be used to modulate cardiac function and treat arrhythmias. However, present methods for monitoring sympathetic release of norepinephrine in the heart are limited in spatial and temporal resolution. Here, we provide for the first time a methodology and demonstration of practice and rapid measures of individualized regional autonomic neurotransmitter levels in a beating heart. We show dynamic, spatially resolved release profiles under normal and pathological conditions.
交感神经系统通过控制心率变时性和心肌收缩力等关键参数来调节心脏功能。心室功能的交感控制通过来自星状神经节和胸交感神经链的外在神经支配来实现。在健康的心脏中,去甲肾上腺素(NE)的交感释放导致心率变时性、心肌收缩力和传导速度的正性调节,显著增加心输出量。然而,在心肌梗死或损伤的情况下,交感神经激活持续存在,导致心力衰竭,并增加心律失常的风险,包括心源性猝死。心脏组织中去甲肾上腺素的检测方法有限。目前的技术依赖于微透析分析,然后通过高效液相色谱法与电化学检测(HPLC-ED)、放射免疫测定或其他免疫测定(如酶联免疫吸附测定(ELISA))进行分析。尽管这些方法已经获得了关于去甲肾上腺素释放和作用的大量信息,但它们在时间分辨率上有限,需要大样本量,并在样本采集后数小时至数周提供显著延迟的结果。在这项研究中,我们报告了一种使用微创、基于电极的快速扫描循环伏安法(FSCV)测量间质心脏去甲肾上腺素的新方法,该方法应用于跳动的猪心。首次提供了体内 NE 释放的多空间和高时间分辨率、多通道测量。我们的数据表明,间质 NE 谱随区域差异而快速变化,对冠状动脉缺血、交感神经刺激以及前负荷/后负荷的变化有反应。通过药理学、电生理学或手术调节交感神经控制可以调节心脏功能和治疗心律失常。然而,目前监测心脏去甲肾上腺素释放的方法在空间和时间分辨率上都有限。在这里,我们首次提供了一种在跳动心脏中进行个性化区域自主神经递质水平快速测量的方法和实践证明。我们展示了正常和病理条件下的动态、空间分辨的释放谱。