Suppr超能文献

工程化 miRNA 支架的直接心脏重编程。

Direct Cardiac Reprogramming with Engineered miRNA Scaffolds.

机构信息

Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama, 350-8585, Japan.

Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, 350-8585, Japan.

出版信息

Curr Pharm Des. 2020;26(34):4285-4303. doi: 10.2174/1381612826666200327161112.

Abstract

Ischemic heart disease is a predominant cause of death worldwide. The loss or death of cardiomyocytes due to restricted blood flow often results in a cardiac injury. Myofibroblasts replace these injured cardiomyocytes to preserve structural integrity. However, the depleted cardiomyocytes lead to cardiac dysfunction such as pathological cardiac dilation, reduced cardiac contraction, and fibrosis. Repair and regeneration of myocardium are the best possible therapy for end-stage heart failure patients because the current cardiomyocytes restoration therapies are limited to heart transplantation only. The emergence of interests to directly reprogram a mammalian heart with minimal regenerative capacity holds a promising future in the field of cardiovascular regenerative medicine. Repair and regeneration become the two crucial factors in the field of cardiovascular regenerative medicine since heart muscles have no substitutes, like heart valves or blood vessels. Cardiac regeneration includes strategies to reprogram with diverse factors like small molecules, genetic and epigenetic regulators. However, there are some constraints like low efficacy, immunogenic problems, and unsafe delivery systems that pose a daunting challenge in human trial translations. Hence, there is a need for a holistic nanoscale approach in regulating cell fate effectively and efficiently with a safer delivery and a suitable microenvironment that mimics the extracellular matrix. In this review, we have discussed the current state-of-the-art techniques, challenges in direct reprogramming of fibroblasts to cardiac muscle, and prospects of biomaterials in miRNA delivery and cardiac regeneration predominantly during the past decade (2008-2019).

摘要

缺血性心脏病是全球主要的死亡原因。由于血流受限导致的心肌细胞的损失或死亡通常会导致心脏损伤。成纤维细胞取代这些受损的心肌细胞以保持结构完整性。然而,耗竭的心肌细胞导致心脏功能障碍,如病理性心脏扩张、收缩力降低和纤维化。修复和再生心肌是治疗终末期心力衰竭患者的最佳方法,因为目前的心肌细胞恢复疗法仅限于心脏移植。直接用最小的再生能力对哺乳动物心脏进行重编程的兴趣的出现,为心血管再生医学领域带来了广阔的前景。修复和再生成为心血管再生医学领域的两个关键因素,因为心脏肌肉没有替代品,如心脏瓣膜或血管。心脏再生包括使用小分子、遗传和表观遗传调节剂等多种因素进行重编程的策略。然而,存在一些限制因素,如效率低、免疫原性问题和不安全的传递系统,这些因素在人体试验翻译中构成了巨大的挑战。因此,需要一种整体的纳米级方法来有效地、高效地调节细胞命运,并提供安全的传递系统和合适的模拟细胞外基质的微环境。在这篇综述中,我们讨论了过去十年(2008-2019 年)中直接将成纤维细胞重编程为心肌细胞的最新技术、挑战以及生物材料在 miRNA 传递和心脏再生中的应用前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验