Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Room 216, Main Building, No. 4, Section 2, North Jianshe Road, Chengdu 610054, China.
Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA.
Mol Plant. 2019 Jul 1;12(7):1027-1036. doi: 10.1016/j.molp.2019.03.011. Epub 2019 Mar 27.
Two recently engineered SpCas9 variants, namely xCas9 and Cas9-NG, show promising potential in improving targeting specificity and broadening the targeting range. In this study, we evaluated these Cas9 variants in the model and crop plant, rice. We first tested xCas9-3.7, the most effective xCas9 variant in mammalian cells, for targeted mutagenesis at 16 possible NGN PAM (protospacer adjacent motif) combinations in duplicates. xCas9 exhibited nearly equivalent editing efficiency to wild-type Cas9 (Cas9-WT) at most canonical NGG PAM sites tested, whereas it showed limited activity at non-canonical NGH (H = A, C, T) PAM sites. High editing efficiency of xCas9 at NGG PAMs was further demonstrated with C to T base editing by both rAPOBEC1 and PmCDA1 cytidine deaminases. With mismatched sgRNAs, we found that xCas9 had improved targeting specificity over the Cas9-WT. Furthermore, we tested two Cas9-NG variants, Cas9-NGv1 and Cas9-NG, for targeting NGN PAMs. Both Cas9-NG variants showed higher editing efficiency at most non-canonical NG PAM sites tested, and enabled much more efficient editing than xCas9 at AT-rich PAM sites such as GAT, GAA, and CAA. Nevertheless, we found that Cas9-NG variants showed significant reduced activity at the canonical NGG PAM sites. In stable transgenic rice lines, we demonstrated that Cas9-NG had much higher editing efficiency than Cas9-NGv1 and xCas9 at NG PAM sites. To expand the base-editing scope, we developed an efficient C to T base-editing system by making fusion of Cas9-NG nickase (D10A version), PmCDA1, and UGI. Taken together, our work benchmarked xCas9 as a high-fidelity nuclease for targeting canonical NGG PAMs and Cas9-NG as a preferred variant for targeting relaxed PAMs for plant genome editing.
两种新设计的 SpCas9 变体,即 xCas9 和 Cas9-NG,在提高靶向特异性和拓宽靶向范围方面显示出了很大的潜力。在这项研究中,我们在模型和作物植物水稻中评估了这些 Cas9 变体。我们首先测试了在哺乳动物细胞中最有效的 xCas9 变体 xCas9-3.7 在 16 种可能的 NGN PAM(间隔基序相邻基序)组合的靶向突变。xCas9 在大多数测试的典型 NGG PAM 位点上与野生型 Cas9(Cas9-WT)具有几乎相当的编辑效率,而在非典型 NGH(H=A、C、T)PAM 位点上的活性有限。xCas9 在 NGG PAMs 上的高编辑效率通过 rAPOBEC1 和 PmCDA1 胞嘧啶脱氨酶的 C 到 T 碱基编辑进一步得到证明。在 sgRNA 不匹配的情况下,我们发现 xCas9 的靶向特异性优于 Cas9-WT。此外,我们测试了两种 Cas9-NG 变体 Cas9-NGv1 和 Cas9-NG,用于靶向 NGN PAMs。在大多数测试的非典型 NG PAM 位点上,这两种 Cas9-NG 变体都显示出更高的编辑效率,并且在富含 AT 的 PAM 位点(如 GAT、GAA 和 CAA)上的编辑效率比 xCas9 高得多。然而,我们发现 Cas9-NG 变体在典型的 NGG PAM 位点上的活性显著降低。在稳定的转基因水稻品系中,我们证明了 Cas9-NG 在 NG PAM 位点上的编辑效率远高于 Cas9-NGv1 和 xCas9。为了扩大碱基编辑范围,我们通过融合 Cas9-NG 切口酶(D10A 版本)、PmCDA1 和 UGI 开发了一种高效的 C 到 T 碱基编辑系统。总的来说,我们的工作将 xCas9 作为靶向典型 NGG PAMs 的高保真核酸酶进行了基准测试,将 Cas9-NG 作为用于植物基因组编辑的放松 PAMs 靶向的首选变体。