Fiáth Richárd, Beregszászi Patrícia, Horváth Domonkos, Wittner Lucia, Aarts Arno A A, Ruther Patrick, Neves Hercules P, Bokor Hajnalka, Acsády László, Ulbert István
Group of Comparative Psychophysiology, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
Faculty of Information Technology and Bionics, Pázmány Péter, Catholic University, Budapest, Hungary.
J Neurophysiol. 2016 Nov 1;116(5):2312-2330. doi: 10.1152/jn.00318.2016. Epub 2016 Aug 17.
Recording simultaneous activity of a large number of neurons in distributed neuronal networks is crucial to understand higher order brain functions. We demonstrate the in vivo performance of a recently developed electrophysiological recording system comprising a two-dimensional, multi-shank, high-density silicon probe with integrated complementary metal-oxide semiconductor electronics. The system implements the concept of electronic depth control (EDC), which enables the electronic selection of a limited number of recording sites on each of the probe shafts. This innovative feature of the system permits simultaneous recording of local field potentials (LFP) and single- and multiple-unit activity (SUA and MUA, respectively) from multiple brain sites with high quality and without the actual physical movement of the probe. To evaluate the in vivo recording capabilities of the EDC probe, we recorded LFP, MUA, and SUA in acute experiments from cortical and thalamic brain areas of anesthetized rats and mice. The advantages of large-scale recording with the EDC probe are illustrated by investigating the spatiotemporal dynamics of pharmacologically induced thalamocortical slow-wave activity in rats and by the two-dimensional tonotopic mapping of the auditory thalamus. In mice, spatial distribution of thalamic responses to optogenetic stimulation of the neocortex was examined. Utilizing the benefits of the EDC system may result in a higher yield of useful data from a single experiment compared with traditional passive multielectrode arrays, and thus in the reduction of animals needed for a research study.
记录分布式神经元网络中大量神经元的同步活动对于理解高阶脑功能至关重要。我们展示了一种最近开发的电生理记录系统的体内性能,该系统包括一个带有集成互补金属氧化物半导体电子器件的二维、多杆、高密度硅探针。该系统实现了电子深度控制(EDC)的概念,这使得能够在每个探针轴上电子选择有限数量的记录位点。该系统的这一创新特性允许高质量地同时记录来自多个脑区的局部场电位(LFP)以及单单元和多单元活动(分别为SUA和MUA),而无需探针进行实际的物理移动。为了评估EDC探针的体内记录能力,我们在急性实验中从麻醉大鼠和小鼠的皮质和丘脑脑区记录了LFP、MUA和SUA。通过研究大鼠药理学诱导的丘脑皮质慢波活动的时空动态以及听觉丘脑的二维音调拓扑映射,说明了使用EDC探针进行大规模记录的优势。在小鼠中,研究了丘脑对新皮质光遗传学刺激的反应的空间分布。与传统的无源多电极阵列相比,利用EDC系统的优势可能会使单次实验获得更高产量的有用数据,从而减少研究所需的动物数量。