Suppr超能文献

丘脑皮质回路的大规模记录:使用二维电子深度控制硅探针进行体内电生理学研究。

Large-scale recording of thalamocortical circuits: in vivo electrophysiology with the two-dimensional electronic depth control silicon probe.

作者信息

Fiáth Richárd, Beregszászi Patrícia, Horváth Domonkos, Wittner Lucia, Aarts Arno A A, Ruther Patrick, Neves Hercules P, Bokor Hajnalka, Acsády László, Ulbert István

机构信息

Group of Comparative Psychophysiology, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.

Faculty of Information Technology and Bionics, Pázmány Péter, Catholic University, Budapest, Hungary.

出版信息

J Neurophysiol. 2016 Nov 1;116(5):2312-2330. doi: 10.1152/jn.00318.2016. Epub 2016 Aug 17.

Abstract

Recording simultaneous activity of a large number of neurons in distributed neuronal networks is crucial to understand higher order brain functions. We demonstrate the in vivo performance of a recently developed electrophysiological recording system comprising a two-dimensional, multi-shank, high-density silicon probe with integrated complementary metal-oxide semiconductor electronics. The system implements the concept of electronic depth control (EDC), which enables the electronic selection of a limited number of recording sites on each of the probe shafts. This innovative feature of the system permits simultaneous recording of local field potentials (LFP) and single- and multiple-unit activity (SUA and MUA, respectively) from multiple brain sites with high quality and without the actual physical movement of the probe. To evaluate the in vivo recording capabilities of the EDC probe, we recorded LFP, MUA, and SUA in acute experiments from cortical and thalamic brain areas of anesthetized rats and mice. The advantages of large-scale recording with the EDC probe are illustrated by investigating the spatiotemporal dynamics of pharmacologically induced thalamocortical slow-wave activity in rats and by the two-dimensional tonotopic mapping of the auditory thalamus. In mice, spatial distribution of thalamic responses to optogenetic stimulation of the neocortex was examined. Utilizing the benefits of the EDC system may result in a higher yield of useful data from a single experiment compared with traditional passive multielectrode arrays, and thus in the reduction of animals needed for a research study.

摘要

记录分布式神经元网络中大量神经元的同步活动对于理解高阶脑功能至关重要。我们展示了一种最近开发的电生理记录系统的体内性能,该系统包括一个带有集成互补金属氧化物半导体电子器件的二维、多杆、高密度硅探针。该系统实现了电子深度控制(EDC)的概念,这使得能够在每个探针轴上电子选择有限数量的记录位点。该系统的这一创新特性允许高质量地同时记录来自多个脑区的局部场电位(LFP)以及单单元和多单元活动(分别为SUA和MUA),而无需探针进行实际的物理移动。为了评估EDC探针的体内记录能力,我们在急性实验中从麻醉大鼠和小鼠的皮质和丘脑脑区记录了LFP、MUA和SUA。通过研究大鼠药理学诱导的丘脑皮质慢波活动的时空动态以及听觉丘脑的二维音调拓扑映射,说明了使用EDC探针进行大规模记录的优势。在小鼠中,研究了丘脑对新皮质光遗传学刺激的反应的空间分布。与传统的无源多电极阵列相比,利用EDC系统的优势可能会使单次实验获得更高产量的有用数据,从而减少研究所需的动物数量。

相似文献

2
In vivo validation of the electronic depth control probes.
Biomed Tech (Berl). 2014 Aug;59(4):283-9. doi: 10.1515/bmt-2012-0102.
3
A silicon-based neural probe with densely-packed low-impedance titanium nitride microelectrodes for ultrahigh-resolution in vivo recordings.
Biosens Bioelectron. 2018 May 30;106:86-92. doi: 10.1016/j.bios.2018.01.060. Epub 2018 Jan 31.
4
Individual auditory thalamic reticular neurons have large and cross-modal sources of cortical and thalamic inputs.
Neuroscience. 2011 Oct 13;193:122-31. doi: 10.1016/j.neuroscience.2011.07.040. Epub 2011 Jul 27.
6
Fine-scale mapping of cortical laminar activity during sleep slow oscillations using high-density linear silicon probes.
J Neurosci Methods. 2019 Mar 15;316:58-70. doi: 10.1016/j.jneumeth.2018.08.020. Epub 2018 Aug 23.
7
Moderate Cortical Cooling Eliminates Thalamocortical Silent States during Slow Oscillation.
J Neurosci. 2015 Sep 23;35(38):13006-19. doi: 10.1523/JNEUROSCI.1359-15.2015.
8
A nanofabricated optoelectronic probe for manipulating and recording neural dynamics.
J Neural Eng. 2018 Aug;15(4):046008. doi: 10.1088/1741-2552/aabc94. Epub 2018 Apr 9.

引用本文的文献

1
Semi-Implantable Bioelectronics.
Nanomicro Lett. 2022 May 28;14(1):125. doi: 10.1007/s40820-022-00818-4.
2
Focal inputs are a potential origin of local field potential (LFP) in the brain regions without laminar structure.
PLoS One. 2019 Dec 11;14(12):e0226028. doi: 10.1371/journal.pone.0226028. eCollection 2019.
3
Nanoenabled Direct Contact Interfacing of Syringe-Injectable Mesh Electronics.
Nano Lett. 2019 Aug 14;19(8):5818-5826. doi: 10.1021/acs.nanolett.9b03019. Epub 2019 Aug 2.
4
Recording Quality of Mechanically Decoupled Floating Versus Skull-Fixed Silicon-Based Neural Probes.
Front Neurosci. 2019 May 21;13:464. doi: 10.3389/fnins.2019.00464. eCollection 2019.
5
Novel electrode technologies for neural recordings.
Nat Rev Neurosci. 2019 Jun;20(6):330-345. doi: 10.1038/s41583-019-0140-6.
6
Time Multiplexed Active Neural Probe with 1356 Parallel Recording Sites.
Sensors (Basel). 2017 Oct 19;17(10):2388. doi: 10.3390/s17102388.

本文引用的文献

2
Microelectrode mapping of tonotopic, laminar, and field-specific organization of thalamo-cortical pathway in rat.
Neuroscience. 2016 Sep 22;332:38-52. doi: 10.1016/j.neuroscience.2016.06.024. Epub 2016 Jun 18.
3
Laminar analysis of the slow wave activity in the somatosensory cortex of anesthetized rats.
Eur J Neurosci. 2016 Aug;44(3):1935-51. doi: 10.1111/ejn.13274. Epub 2016 Jun 9.
4
Close-Packed Silicon Microelectrodes for Scalable Spatially Oversampled Neural Recording.
IEEE Trans Biomed Eng. 2016 Jan;63(1):120-130. doi: 10.1109/TBME.2015.2406113.
5
Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning.
Hippocampus. 2015 Oct;25(10):1073-188. doi: 10.1002/hipo.22488.
6
Brain activity mapping at multiple scales with silicon microprobes containing 1,024 electrodes.
J Neurophysiol. 2015 Sep;114(3):2043-52. doi: 10.1152/jn.00464.2015. Epub 2015 Jul 1.
7
Past, present and future of spike sorting techniques.
Brain Res Bull. 2015 Oct;119(Pt B):106-17. doi: 10.1016/j.brainresbull.2015.04.007. Epub 2015 Apr 27.
8
NeuroGrid: recording action potentials from the surface of the brain.
Nat Neurosci. 2015 Feb;18(2):310-5. doi: 10.1038/nn.3905. Epub 2014 Dec 22.
9
New approaches for CMOS-based devices for large-scale neural recording.
Curr Opin Neurobiol. 2015 Jun;32:31-7. doi: 10.1016/j.conb.2014.10.007. Epub 2014 Oct 30.
10
The thalamocortical network as a single slow wave-generating unit.
Curr Opin Neurobiol. 2015 Apr;31:72-80. doi: 10.1016/j.conb.2014.09.001. Epub 2014 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验