Suppr超能文献

用于评估步态的犬类刚体肌肉骨骼计算机模型的开发。

Development of a Canine Rigid Body Musculoskeletal Computer Model to Evaluate Gait.

作者信息

Brown Nathan P, Bertocci Gina E, States Gregory J R, Levine Gwendolyn J, Levine Jonathan M, Howland Dena R

机构信息

Canine Rehabilitation and Biomechanics Laboratory, Department of Bioengineering, J.B. Speed School of Engineering, University of Louisville, Louisville, KY, United States.

Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States.

出版信息

Front Bioeng Biotechnol. 2020 Mar 11;8:150. doi: 10.3389/fbioe.2020.00150. eCollection 2020.

Abstract

BACKGROUND

Kinematic and kinetic analysis have been used to gain an understanding of canine movement and joint loading during gait. By non-invasively predicting muscle activation patterns and forces during gait, musculoskeletal models can further our understanding of normal variability and muscle activation patterns and force profiles characteristic of gait.

METHODS

Pelvic limb kinematics and kinetics were measured for a 2 year old healthy female Dachshund (5.4 kg) during gait using 3-D motion capture and force platforms. A computed tomography scan was conducted to acquire pelvis and pelvic limb morphology. Using the OpenSim modeling platform, a bilateral pelvic limb subject-specific rigid body musculoskeletal computer model was developed. This model predicted muscle activation patterns, muscle forces, and angular kinematics and joint moments during walking.

RESULTS

Gait kinematics determined from motion capture matched those predicted by the model, verifying model accuracy. Primary muscles involved in generating joint moments during stance and swing were predicted by the model: at mid-stance the adductor magnus et brevis (peak activation 53.2%, peak force 64.7 N) extended the hip, and stifle flexor muscles (biceps femoris tibial and calcaneal portions) flexed the stifle. Countering vertical ground reaction forces, the iliopsoas (peak activation 37.9%, peak force 68.7 N) stabilized the hip in mid-stance, while the biceps femoris patellar portion stabilized the stifle in mid-stance and the plantar flexors (gastrocnemius and flexor digitorum muscles) stabilized the tarsal joint during early stance. Transitioning to swing, the iliopsoas, rectus femoris and tensor fascia lata flexed the hip, while in late swing the adductor magnus et brevis impeded further flexion as biceps femoris tibial and calcaneal portions stabilized the stifle for ground contact.

CONCLUSION

The musculoskeletal computer model accurately replicated experimental canine angular kinematics associated with gait and was used to predict muscle activation patterns and forces. Thus, musculoskeletal modeling allows for quantification of measures such as muscle forces that are difficult or impossible to measure .

摘要

背景

运动学和动力学分析已被用于了解犬类在步态中的运动和关节负荷情况。通过非侵入性地预测步态期间的肌肉激活模式和力量,肌肉骨骼模型可以加深我们对正常变异性以及步态特征性的肌肉激活模式和力量分布的理解。

方法

使用三维运动捕捉和力平台,对一只2岁健康雌性腊肠犬(5.4千克)在步态期间的骨盆肢体运动学和动力学进行测量。进行计算机断层扫描以获取骨盆和骨盆肢体形态。使用OpenSim建模平台,开发了一个双侧骨盆肢体特定受试者的刚体肌肉骨骼计算机模型。该模型预测了行走过程中的肌肉激活模式、肌肉力量、角运动学和关节力矩。

结果

通过运动捕捉确定的步态运动学与模型预测的结果相匹配,验证了模型的准确性。模型预测了在站立和摆动过程中产生关节力矩的主要肌肉:在站立中期,大收肌和短收肌(峰值激活53.2%,峰值力量64.7牛)伸展髋关节,而膝关节屈肌(股二头肌的胫骨和跟骨部分)屈曲膝关节。为了对抗垂直地面反作用力,髂腰肌(峰值激活37.9%,峰值力量68.7牛)在站立中期稳定髋关节,而股二头肌的髌部在站立中期稳定膝关节,跖屈肌(腓肠肌和趾长屈肌)在站立早期稳定跗关节。在过渡到摆动期时,髂腰肌、股直肌和阔筋膜张肌屈曲髋关节,而在摆动后期,大收肌和短收肌阻碍进一步屈曲,同时股二头肌的胫骨和跟骨部分稳定膝关节以便与地面接触。

结论

肌肉骨骼计算机模型准确地复制了与步态相关的实验犬类角运动学,并用于预测肌肉激活模式和力量。因此,肌肉骨骼建模允许对诸如肌肉力量等难以或无法测量的指标进行量化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e10e/7079575/c11d9911acf6/fbioe-08-00150-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验