Chaikh A, Thariat J, Thureau S, Tessonnier T, Kammerer E, Fontbonne C, Dubray B, Balosso J, Fontbonne J M
Laboratoire de physique corpusculaire IN2P3/ENSICAEN - UMR6534, Unicaen, Normandie université, Caen, France; ARCHADE, Advanced Resource Center for HADrontherapy in Europe, Caen, France.
Laboratoire de physique corpusculaire IN2P3/ENSICAEN - UMR6534, Unicaen, Normandie université, Caen, France; ARCHADE, Advanced Resource Center for HADrontherapy in Europe, Caen, France; Service de radiothérapie et physique médicale, centre François-Baclesse, Caen, France.
Cancer Radiother. 2020 Jun;24(3):247-257. doi: 10.1016/j.canrad.2019.12.004. Epub 2020 Mar 24.
In radiotherapy, the dose prescription is currently based on discretized dose-effects records that do not take into fully account for the complexity of the patient-dose-response relationship. Their predictive performance on both anti-tumour efficacy and toxicity can be optimized by integrating radiobiological models. It is with this in mind that the calculation models TCP (Tumor Control Probability) and NTCP (Normal Tissue Complication Probability) have been developed. Their construction involves several important steps that are necessary and important to understand. The first step is based on radiobiological models allowing to calculate according to more or less complexity the rate of surviving cells after irradiation. Two additional steps are required to convert the physical dose into an equivalent biological dose, in particular a 2Gy equivalent biological dose (EQD2): first to take into account the effect of the fractionation of the dose for both the target volume and the organs at risk; second to convert an heterogeneous dose to an organ into an homogeneous dose having the same effect (Niemierko generalized equivalent uniform dose (gEUD)). Finally, the process of predicting clinical effects based on radiobiological models transform doses into tumour control (TCP) or toxicity (NTCP) probabilities using parameters that reflect the radiobiological characteristics of the tissues in question. The use of these models in current practice is still limited, but since the radiotherapy softwares increasingly integrate them, it is important to know the principle and limits of application of these models.
在放射治疗中,目前的剂量处方是基于离散的剂量效应记录,这些记录没有充分考虑患者剂量反应关系的复杂性。通过整合放射生物学模型,可以优化它们在抗肿瘤疗效和毒性方面的预测性能。正是出于这个考虑,才开发了肿瘤控制概率(TCP)和正常组织并发症概率(NTCP)计算模型。它们的构建涉及几个重要步骤,理解这些步骤是必要且重要的。第一步基于放射生物学模型,该模型允许根据或多或少的复杂性计算照射后存活细胞的比例。还需要另外两个步骤将物理剂量转换为等效生物剂量,特别是2Gy等效生物剂量(EQD2):首先要考虑靶区体积和危及器官的剂量分割效应;其次要将器官的非均匀剂量转换为具有相同效果的均匀剂量(Niemierko广义等效均匀剂量(gEUD))。最后,基于放射生物学模型预测临床效应的过程使用反映相关组织放射生物学特征的参数将剂量转换为肿瘤控制(TCP)或毒性(NTCP)概率。这些模型在当前实践中的应用仍然有限,但由于放射治疗软件越来越多地将它们整合进来,了解这些模型的原理和应用局限性很重要。