BC Cancer-Sindi Ahluwalia Hawkins Centre, Dept. of Surgical Oncology, 399 Royal Ave, Kelowna, BC, V1Y 5L3, Canada; University of British Columbia Southern Medical Program, 2312 Pandosy Street, Kelowna, BC, V1Y 1T3, Canada.
University of British Columbia Southern Medical Program, 2312 Pandosy Street, Kelowna, BC, V1Y 1T3, Canada.
Am J Surg. 2020 May;219(5):750-755. doi: 10.1016/j.amjsurg.2020.02.059. Epub 2020 Mar 13.
Among melanoma patients with a tumor-positive sentinel node biopsy (SNB), approximately 20% harbor disease in non-sentinel nodes (nSN), as determined by a completion lymph node dissection (CLND). CLND lacks a survival benefit and has high morbidity. This study assesses predictive factors for nSN metastasis and validates five models predicting nSN metastasis.
Patients with invasive melanoma were identified from the BC Cancer Agency (2005-2015). Clinicopathological data were collected from 296 patients who underwent a CLND after a positive SNB. Multivariate analysis was completed to assess predictive variables in the study population. Five models were externally validated using overall model performance (Brier score [calibration and discrimination]) and discrimination (area under the ROC curve [AUC]).
Seventy-three patients had nSN metastasis at the time of CLND. The variable most predictive of nSN involvement was lymphovascular invasion (odds ratio [OR] 3.99; 95% confidence interval [CI] 1.67-9.54; p = 0.002). The highest discrimination was Lee et al. (2004) (AUC 0.68 [95% CI 0.61-0.75]), Rossi et al. (2018) (AUC 0.68 [95% CI 0.57-0.77]), and Bertolli et al. (2019) (AUC 0.68 [95% CI 0.60-0.75]). Rossi et al. (2018) had the lowest overall model performance (Brier score 0.44). Rossi et al. (2018) and Bertolli et al. (2019) had the ability to stratify patients to a risk of nSN involvement up to 99% and 95%, respectively.
Bertolli et al. (2019) had amongst the highest overall model performance, was the most clinically meaningful and is recommended as the preferred model for predicting nSN metastasis.
在肿瘤阳性前哨淋巴结活检(SNB)的黑色素瘤患者中,约 20%的患者在非前哨淋巴结(nSN)中存在疾病,这是通过完成淋巴结清扫术(CLND)确定的。CLND 缺乏生存获益,且发病率高。本研究评估了 nSN 转移的预测因素,并验证了五种预测 nSN 转移的模型。
从 BC 癌症机构(2005-2015 年)中确定了侵袭性黑色素瘤患者。从 296 名接受 SNB 后行 CLND 的患者中收集了临床病理数据。完成多变量分析以评估研究人群中的预测变量。使用整体模型性能(Brier 评分[校准和区分])和区分度(ROC 曲线下面积[AUC])对 5 种模型进行外部验证。
73 例患者在 CLND 时出现 nSN 转移。最能预测 nSN 受累的变量是淋巴管血管侵犯(优势比[OR]3.99;95%置信区间[CI]1.67-9.54;p=0.002)。最高的区分度是 Lee 等人(2004 年)(AUC 0.68 [95%CI 0.61-0.75])、Rossi 等人(2018 年)(AUC 0.68 [95%CI 0.57-0.77])和 Bertolli 等人(2019 年)(AUC 0.68 [95%CI 0.60-0.75])。Rossi 等人(2018 年)的整体模型性能最低(Brier 评分 0.44)。Rossi 等人(2018 年)和 Bertolli 等人(2019 年)能够将患者分层为 nSN 受累风险高达 99%和 95%。
Bertolli 等人(2019 年)的整体模型性能最高,最具临床意义,建议作为预测 nSN 转移的首选模型。