Suppr超能文献

图形处理单元加速基于全变差的压缩感知光声计算机断层成像。

Graphics processing unit accelerating compressed sensing photoacoustic computed tomography with total variation.

出版信息

Appl Opt. 2020 Jan 20;59(3):712-719. doi: 10.1364/AO.378466.

Abstract

Photoacoustic computed tomography with compressed sensing (CS-PACT) is a commonly used imaging strategy for sparse-sampling PACT. However, it is very time-consuming because of the iterative process involved in the image reconstruction. In this paper, we present a graphics processing unit (GPU)-based parallel computation framework for total-variation-based CS-PACT and adapted into a custom-made PACT system. Specifically, five compute-intensive operators are extracted from the iteration algorithm and are redesigned for parallel performance on a GPU. We achieved an image reconstruction speed 24-31 times faster than the CPU performance. We performed in vivo experiments on human hands to verify the feasibility of our developed method.

摘要

基于压缩感知的光声计算机断层成像(CS-PACT)是稀疏采样 PACT 常用的成像策略。但是,由于图像重建涉及迭代过程,因此非常耗时。在本文中,我们提出了一种基于图形处理单元(GPU)的总变分 CS-PACT 并行计算框架,并将其应用于定制的 PACT 系统。具体来说,从迭代算法中提取了五个计算密集型算子,并对其进行了重新设计,以便在 GPU 上实现并行性能。我们实现了比 CPU 性能快 24-31 倍的图像重建速度。我们在人手上进行了体内实验,以验证我们开发的方法的可行性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验