Gladyshev Sergei, Karamanos Theodosios D, Kuhn Lina, Beutel Dominik, Weiss Thomas, Rockstuhl Carsten, Bogdanov Andrey
Institute of Physics, University of Graz, Universitätsplatz 5, 8010 Graz, Austria.
Institut Langevin, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France.
Nanophotonics. 2023 Sep 22;12(19):3767-3779. doi: 10.1515/nanoph-2023-0373. eCollection 2023 Sep.
Metasurfaces with bound states in the continuum (BICs) have proven to be a powerful platform for drastically enhancing light-matter interactions, improving biosensing, and precisely manipulating near- and far-fields. However, engineering metasurfaces to provide an on-demand spectral and angular position for a BIC remains a prime challenge. A conventional solution involves a fine adjustment of geometrical parameters, requiring multiple time-consuming calculations. In this work, to circumvent such tedious processes, we develop a physics-inspired, inverse design method on all-dielectric metasurfaces for an on-demand spectral and angular position of a BIC. Our suggested method predicts the core-shell particles that constitute the unit cell of the metasurface, while considering practical limitations on geometry and available materials. Our method is based on a smart combination of a semi-analytical solution, for predicting the required dipolar Mie coefficients of the meta-atom, and a machine learning algorithm, for finding a practical design of the meta-atom that provides these Mie coefficients. Although our approach is exemplified in designing a metasurface sustaining a BIC, it can, also, be applied to many more objective functions. With that, we pave the way toward a general framework for the inverse design of metasurfaces in specific and nanophotonic structures in general.
具有连续统束缚态(BIC)的超表面已被证明是一个强大的平台,可极大地增强光与物质的相互作用、改善生物传感并精确操纵近场和远场。然而,设计超表面以提供BIC所需的光谱和角位置仍然是一个主要挑战。传统的解决方案涉及对几何参数的精细调整,这需要进行多次耗时的计算。在这项工作中,为了规避此类繁琐的过程,我们针对BIC的按需光谱和角位置,在全介质超表面上开发了一种受物理启发的逆向设计方法。我们提出的方法在考虑几何形状和可用材料的实际限制的同时,预测构成超表面单元胞的核壳粒子。我们的方法基于半解析解(用于预测超原子所需的偶极米氏系数)和机器学习算法(用于找到提供这些米氏系数的超原子的实际设计)的巧妙结合。尽管我们的方法在设计支持BIC的超表面时得到了例证,但它也可以应用于更多的目标函数。借此,我们为超表面在特定情况下以及一般纳米光子结构中的逆向设计的通用框架铺平了道路。