Suppr超能文献

锂/硒电池化学中微孔碳限域效应的新见解:一种具有增强导电性的阴极

New Insight into the Confinement Effect of Microporous Carbon in Li/Se Battery Chemistry: A Cathode with Enhanced Conductivity.

作者信息

Wang Xiwen, Tan Yuqing, Liu Zhixiao, Fan Yuqin, Li Mingnan, Younus Hussein A, Duan Junfei, Deng Huiqiu, Zhang Shiguo

机构信息

College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Tianma Rd. 27, Changsha, Hunan, 410082, China.

School of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410004, China.

出版信息

Small. 2020 Apr;16(17):e2000266. doi: 10.1002/smll.202000266. Epub 2020 Mar 29.

Abstract

Embedding the fragmented selenium into the micropores of carbon host has been regarded as an effective strategy to change the Li-Se chemistry by a solid-solid mechanism, thereby enabling an excellent cycling stability in Li-Se batteries using carbonate electrolyte. However, the effect of spatial confinement by micropores in the electrochemical behavior of carbon/selenium materials remains ambiguous. A comparative study of using both microporous (MiC) and mesoporous carbons (MeC) with narrow pore size distribution as selenium hosts is herein reported. Systematic investigations reveal that the high Se utilization rate and better electrode kinetics of MiC/Se cathode than MeC/Se cathode may originate from both its improved Li+ and electronic conductivities. The small pore size (<1.35 nm) of the carbon matrices not only facilitates the formation of a compact and robust solid-electrolyte interface (SEI) with low interfacial resistance on cathode, but also alters the insulating nature of Li Se due to the emergence of itinerant electrons. By comparing the electrochemical behavior of MiC/Se cathode and the matching relationship between the diameter of pores and the dimension of solvent molecules in carbonate, ether, and solvate ionic liquid electrolyte, the key role of SEI film in the operation of C/Se cathode by quasi-solid-solid mechanism is also highlighted.

摘要

将碎片化的硒嵌入碳主体的微孔中,已被视为一种通过固-固机制改变锂-硒化学性质的有效策略,从而在使用碳酸盐电解质的锂-硒电池中实现出色的循环稳定性。然而,微孔的空间限制对碳/硒材料电化学行为的影响仍不明确。本文报道了一项使用孔径分布窄的微孔碳(MiC)和介孔碳(MeC)作为硒主体的对比研究。系统研究表明,MiC/Se阴极比MeC/Se阴极具有更高的硒利用率和更好的电极动力学,这可能源于其Li⁺和电子电导率的提高。碳基体的小孔径(<1.35 nm)不仅有助于在阴极形成具有低界面电阻的致密且坚固的固体电解质界面(SEI),还由于巡游电子的出现改变了Li₂Se的绝缘性质。通过比较MiC/Se阴极的电化学行为以及碳酸盐、醚和溶剂化离子液体电解质中孔直径与溶剂分子尺寸之间的匹配关系,还突出了SEI膜在C/Se阴极通过准固-固机制运行中的关键作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验