Suppr超能文献

用于高性能钾阴极的MoSe驱动的结合嵌入和转化反应的键调制。

Bond modulation of MoSe driving combined intercalation and conversion reactions for high-performance K cathodes.

作者信息

Lei Ting, Gu Mingyuan, Fu Hongwei, Wang Jue, Wang Longlu, Zhou Jiang, Liu Huan, Lu Bingan

机构信息

School of Physics and Electronics, Hunan University Changsha 410082 P. R. China

College of Chemistry and Chemical Engineering, Central South University Changsha 410083 P. R. China.

出版信息

Chem Sci. 2023 Feb 10;14(10):2528-2536. doi: 10.1039/d2sc07121e. eCollection 2023 Mar 8.

Abstract

The urgent demand for large-scale global energy storage systems and portable electronic devices is driving the need for considerable energy density and stable batteries. Here, Se atoms are introduced between MoSe layers (denoted as MoSe ) by bond modulation to produce a high-performance cathode for potassium-ion batteries. The introduced Se atoms form covalent Se-Se bonds with the Se in MoSe, and the advantages of bond modulation are as follows: (i) the interlayer spacing is enlarged which increases the storage space of K; (ii) the system possesses a dual reaction mechanism, and the introduced Se can provide an additional conversion reaction when discharged to 0.5 V, which improves the capacity further; (iii) the Se atoms confined between MoSe layers do not give rise to the shuttle effect. MoSe is compounded with rGO (MoSe -rGO) as a cathode for potassium-ion batteries and displays an ultrahigh capacity (235 mA h g at 100 mA g), a long cycle life (300 cycles at 100 mA g) and an extraordinary rate performance (135 mA h g at 1000 mA g and 89 mA h g at 2000 mA g). Pairing the MoSe -rGO cathode with graphite, the full cell delivers considerable energy density compared to other K cathode materials. The MoSe -rGO cathode also exhibits excellent electrochemical performance for lithium-ion batteries. This study on bond modulation driving combined intercalation and conversion reactions offers new insights into the design of high-performance K cathodes.

摘要

全球对大规模储能系统和便携式电子设备的迫切需求推动了对具有相当高能量密度和稳定电池的需求。在此,通过键调制将硒(Se)原子引入到二硒化钼(MoSe₂)层之间(表示为MoSe₂−xSe),以制备用于钾离子电池的高性能阴极。引入的Se原子与MoSe₂中的Se形成共价Se−Se键,键调制的优点如下:(i)层间距增大,增加了K的存储空间;(ii)该体系具有双反应机制,引入的Se在放电至0.5 V时可提供额外的转化反应,进一步提高了容量;(iii)限制在MoSe₂层之间的Se原子不会引起穿梭效应。将MoSe₂−xSe与还原氧化石墨烯(rGO)复合作为钾离子电池的阴极,表现出超高容量(100 mA g⁻¹时为235 mA h g⁻¹)、长循环寿命(100 mA g⁻¹时为300次循环)和优异的倍率性能(1000 mA g⁻¹时为135 mA h g⁻¹,2000 mA g⁻¹时为89 mA h g⁻¹)。将MoSe₂−xSe−rGO阴极与石墨配对,与其他钾阴极材料相比,全电池具有相当可观的能量密度。MoSe₂−xSe−rGO阴极对锂离子电池也表现出优异的电化学性能。这项关于键调制驱动嵌入和转化反应的研究为高性能钾阴极的设计提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e851/9993863/aa54f8a47ea4/d2sc07121e-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验