Suppr超能文献

钠离子通道癫痫与神经发育障碍:从疾病机制到临床应用。

Sodium channel epilepsies and neurodevelopmental disorders: from disease mechanisms to clinical application.

机构信息

The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK.

School of Medicine, University of Glasgow, Glasgow, UK.

出版信息

Dev Med Child Neurol. 2020 Jul;62(7):784-792. doi: 10.1111/dmcn.14519. Epub 2020 Mar 30.

Abstract

Genetic variants in brain-expressed voltage-gated sodium channels (SCNs) have emerged as one of the most frequent causes of Mendelian forms of epilepsy and neurodevelopmental disorders (NDDs). This review explores the biological concepts that underlie sodium channel NDDs, explains their phenotypic heterogeneity, and appraises how this knowledge may inform clinical practice. We observe that excitatory/inhibitory neuronal expression ratios of sodium channels are important regulatory mechanisms underlying brain development, homeostasis, and neurological diseases. We hypothesize that a detailed understanding of gene expression, variant tolerance, location, and function, as well as timing of seizure onset can aid the understanding of how variants in SCN1A, SCN2A, SCN3A, and SCN8A contribute to seizure aetiology and inform treatment choice. We propose a model in which variant type, development-specific gene expression, and functions of SCNs explain the heterogeneity of sodium channel associated NDDs. Understanding of basic disease mechanisms and detailed knowledge of variant characteristics have increasing influence on clinical decision making, enabling us to stratify treatment and move closer towards precision medicine in sodium channel epilepsy and NDDs. WHAT THIS PAPER ADDS: Sodium-channel disorder heterogeneity is explained by variant-specific gene expression timing and function. Gene tolerance and location analyses aid sodium channel variant interpretation. Sodium-channel variant characteristics can contribute to clinical decision making.

摘要

脑表达电压门控钠离子通道(SCN)中的遗传变异已成为常染色体显性遗传形式的癫痫和神经发育障碍(NDD)的最常见原因之一。本综述探讨了钠离子通道 NDD 背后的生物学概念,解释了其表型异质性,并评估了这些知识如何为临床实践提供信息。我们观察到,钠离子通道的兴奋性/抑制性神经元表达比例是脑发育、内稳态和神经疾病的重要调节机制。我们假设,详细了解基因表达、变体耐受性、位置和功能,以及癫痫发作的时间,可以帮助我们了解 SCN1A、SCN2A、SCN3A 和 SCN8A 中的变体如何导致癫痫发作的病因,并为治疗选择提供信息。我们提出了一个模型,其中变体类型、发育特异性基因表达和 SCN 的功能解释了与钠离子通道相关的 NDD 的异质性。对基本疾病机制的理解和对变体特征的详细了解对临床决策制定的影响越来越大,使我们能够对治疗进行分层,并在钠离子通道癫痫和 NDD 中更接近精准医学。本文的新增内容:钠离子通道障碍的异质性可通过特定于变体的基因表达时间和功能来解释。基因耐受性和位置分析有助于钠离子通道变体的解释。钠离子通道变体特征可有助于临床决策。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验