Suppr超能文献

将二分类结局临床试验中的历史双臂数据纳入:一种实用方法。

Incorporating historical two-arm data in clinical trials with binary outcome: A practical approach.

机构信息

Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany.

出版信息

Pharm Stat. 2020 Sep;19(5):662-678. doi: 10.1002/pst.2023. Epub 2020 Mar 30.

Abstract

The feasibility of a new clinical trial may be increased by incorporating historical data of previous trials. In the particular case where only data from a single historical trial are available, there exists no clear recommendation in the literature regarding the most favorable approach. A main problem of the incorporation of historical data is the possible inflation of the type I error rate. A way to control this type of error is the so-called power prior approach. This Bayesian method does not "borrow" the full historical information but uses a parameter 0 ≤ δ ≤ 1 to determine the amount of borrowed data. Based on the methodology of the power prior, we propose a frequentist framework that allows incorporation of historical data from both arms of two-armed trials with binary outcome, while simultaneously controlling the type I error rate. It is shown that for any specific trial scenario a value δ > 0 can be determined such that the type I error rate falls below the prespecified significance level. The magnitude of this value of δ depends on the characteristics of the data observed in the historical trial. Conditionally on these characteristics, an increase in power as compared to a trial without borrowing may result. Similarly, we propose methods how the required sample size can be reduced. The results are discussed and compared to those obtained in a Bayesian framework. Application is illustrated by a clinical trial example.

摘要

纳入先前试验的历史数据可能会增加新临床试验的可行性。在仅有单个历史试验数据的特殊情况下,文献中对于最有利的方法没有明确的建议。纳入历史数据的一个主要问题是可能会导致Ⅰ类错误率膨胀。控制这种错误的一种方法是所谓的功效先验方法。这种贝叶斯方法不会“借用”完整的历史信息,而是使用参数 0≤δ≤1 来确定借用数据的数量。基于功效先验的方法,我们提出了一种频率派框架,允许将具有二分类结局的双臂试验的两个臂的历史数据纳入其中,同时控制Ⅰ类错误率。结果表明,对于任何特定的试验情况,都可以确定一个大于 0 的值 δ,使得Ⅰ类错误率低于预定的显著性水平。该值 δ 的大小取决于历史试验中观察到的数据特征。在这些特征的条件下,与不借用数据的试验相比,可能会增加功效。同样,我们提出了如何减少所需样本量的方法。讨论了结果并与贝叶斯框架中的结果进行了比较。应用通过临床试验示例进行说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验