Suppr超能文献

基于病毒载量调整的 HIV 感染女性免疫恶化、免疫恢复和状态特异性持续时间的建模:使用参数多状态模型。

Modelling immune deterioration, immune recovery and state-specific duration of HIV-infected women with viral load adjustment: using parametric multistate model.

机构信息

School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban, South Africa.

College of Science, Bahir Dar University, Bahir Dar, Ethiopia.

出版信息

BMC Public Health. 2020 Mar 30;20(1):416. doi: 10.1186/s12889-020-08530-x.

Abstract

BACKGROUND

CD4 cell and viral load count are highly correlated surrogate markers of human immunodeficiency virus (HIV) disease progression. In modelling the progression of HIV, previous studies mostly dealt with either CD4 cell counts or viral load alone. In this work, both biomarkers are in included one model, in order to study possible factors that affect the intensities of immune deterioration, immune recovery and state-specific duration of HIV-infected women.

METHODS

The data is from an ongoing prospective cohort study conducted among antiretroviral treatment (ART) naïve HIV-infected women in the province of KwaZulu-Natal, South Africa. Participants were enrolled in the acute HIV infection phase, then followed-up during chronic infection up to ART initiation. Full-parametric and semi-parametric Markov models were applied. Furthermore, the effect of the inclusion and exclusion viral load in the model was assessed.

RESULTS

Inclusion of a viral load component improves the efficiency of the model. The analysis results showed that patients who reported a stable sexual partner, having a higher educational level, higher physical health score and having a high mononuclear component score are more likely to spend more time in a good HIV state (particularly normal disease state). Patients with TB co-infection, with anemia, having a high liver abnormality score and patients who reported many sexual partners, had a significant increase in the intensities of immunological deterioration transitions. On the other hand, having high weight, higher education level, higher quality of life score, having high RBC parameters, high granulocyte component scores and high mononuclear component scores, significantly increased the intensities of immunological recovery transitions.

CONCLUSION

Inclusion of both CD4 cell count based disease progression states and viral load, in the time-homogeneous Markov model, assisted in modeling the complete disease progression of HIV/AIDS. Higher quality of life (QoL) domain scores, good clinical characteristics, stable sexual partner and higher educational level were found to be predictive factors for transition and length of stay in sequential adversity of HIV/AIDS.

摘要

背景

CD4 细胞和病毒载量计数是与人类免疫缺陷病毒(HIV)疾病进展高度相关的替代标志物。在 HIV 进展建模中,以前的研究大多单独处理 CD4 细胞计数或病毒载量。在这项工作中,我们将这两个生物标志物纳入一个模型中,以研究可能影响免疫恶化、免疫恢复和 HIV 感染女性特定状态持续时间的强度的因素。

方法

数据来自南非夸祖鲁-纳塔尔省正在进行的一项抗逆转录病毒治疗(ART)初治 HIV 感染女性的前瞻性队列研究。参与者在急性 HIV 感染阶段入组,然后在慢性感染期间随访至开始 ART。应用完全参数和半参数马尔可夫模型。此外,还评估了纳入和排除模型中病毒载量的效果。

结果

纳入病毒载量成分可提高模型效率。分析结果表明,报告稳定性伴侣、受教育程度较高、身体健康评分较高且单核细胞成分评分较高的患者更有可能处于良好的 HIV 状态(特别是正常疾病状态)。患有结核病合并感染、贫血、肝脏异常评分较高以及报告有多个性伴侣的患者,免疫恶化转变的强度显著增加。另一方面,体重较高、受教育程度较高、生活质量评分较高、红细胞参数较高、粒细胞成分评分较高和单核细胞成分评分较高的患者,免疫恢复转变的强度显著增加。

结论

在时间均匀的马尔可夫模型中纳入 CD4 细胞计数为基础的疾病进展状态和病毒载量,有助于对 HIV/AIDS 的完整疾病进展进行建模。较高的生活质量(QoL)评分、良好的临床特征、稳定的性伴侣和较高的受教育程度被发现是 HIV/AIDS 顺序逆境中的转移和停留时间的预测因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/142e/7106875/55e2663f5690/12889_2020_8530_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验