Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.
State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China.
Microb Cell Fact. 2020 Mar 30;19(1):80. doi: 10.1186/s12934-020-01335-y.
The bioconversion of phytosterols into high value-added steroidal intermediates, including the 9α-hydroxy-4-androstene-3,17-dione (9-OHAD) and 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC), is the cornerstone in steroid pharmaceutical industry. However, the low transportation efficiency of hydrophobic substrates into mycobacterial cells severely limits the transformation. In this study, a robust and stable modification of the cell wall in M. neoaurum strain strikingly enhanced the cell permeability for the high production of steroids.
The deletion of the nonessential kasB, encoding a β-ketoacyl-acyl carrier protein synthase, led to a disturbed proportion of mycolic acids (MAs), which is one of the most important components in the cell wall of Mycobacterium neoaurum ATCC 25795. The determination of cell permeability displayed about two times improvement in the kasB-deficient strain than that of the wild type M. neoaurum. Thus, the deficiency of kasB in the 9-OHAD-producing strain resulted in a significant increase of 137.7% in the yield of 9α-hydroxy-4-androstene-3,17-dione (9-OHAD). Ultimately, the 9-OHAD productivity in an industrial used resting cell system was reached 0.1135 g/L/h (10.9 g/L 9-OHAD from 20 g/L phytosterol) and the conversion time was shortened by 33%. In addition, a similar self-enhancement effect (34.5%) was realized in the 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC) producing strain.
The modification of kasB resulted in a meaningful change in the cell wall mycolic acids. Deletion of the kasB gene remarkably improved the cell permeability, leading to a self-enhancement of the steroidal intermediate conversion. The results showed a high efficiency and feasibility of this construction strategy.
将植物甾醇生物转化为高附加值甾体中间产物,包括 9α-羟基-4-雄烯-3,17-二酮(9-OHAD)和 22-羟基-23,24-双降胆甾-4-烯-3-酮(4-HBC),是甾体药物工业的基石。然而,疏水性底物进入分枝杆菌细胞的运输效率低,严重限制了转化。在这项研究中,对分枝杆菌细胞的细胞壁进行了稳健而稳定的修饰,显著提高了细胞通透性,从而实现了甾体的高产。
非必需基因 kasB 的缺失,编码β-酮酰-酰基载体蛋白合酶,导致分枝杆菌细胞壁中最重要成分之一的类脂阿拉伯甘露聚糖(MAs)的比例失调。细胞通透性的测定显示,kasB 缺陷菌株的通透性比野生型分枝杆菌提高了约两倍。因此,9-OHAD 产生菌株中 kasB 的缺失导致 9α-羟基-4-雄烯-3,17-二酮(9-OHAD)的产量增加了 137.7%。最终,在工业上使用静止细胞系统实现了 0.1135 g/L/h 的 9-OHAD 生产力(20 g/L 植物甾醇中 10.9 g/L 的 9-OHAD),并缩短了 33%的转化时间。此外,在 22-羟基-23,24-双降胆甾-4-烯-3-酮(4-HBC)产生菌株中也实现了类似的自我增强效应(34.5%)。
kasB 的修饰导致细胞壁类脂阿拉伯甘露聚糖发生了有意义的变化。kasB 基因的缺失显著提高了细胞通透性,导致甾体中间产物转化率的自我增强。结果表明,这种构建策略具有高效率和可行性。