i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Portugal; FEUP-Faculdade de Engenharia da Universidade do Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal; LEPABE-Laboratório de Engenharia de Processos, Ambiente, Biotecnologia e Energia, Faculdade de Engenharia da Universidade do Porto, Portugal.
i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Portugal.
Mater Sci Eng C Mater Biol Appl. 2020 Apr;109:110537. doi: 10.1016/j.msec.2019.110537. Epub 2019 Dec 16.
Implantable medical devices infection and consequent failure is a severe health issue, which can result from bacterial adhesion, growth, and subsequent biofilm formation at the implantation site. Graphene-based materials, namely graphene oxide (GO), have been described as potential antibacterial agents when immobilized and exposed in polymeric matrices. This work focuses on the development of antibacterial and biocompatible 3D fibrous scaffolds incorporating GO. Poly(ε-caprolactone) scaffolds were produced, with and without GO, using wet-spinning combined with additive manufacturing. Scaffolds with different GO loadings were evaluated regarding physical-chemical characterization, namely GO surface exposure, antibacterial properties, and ability to promote human cells adhesion. Antimicrobial properties were evaluated through live/dead assays performed with Gram-positive and Gram-negative bacteria. 2 h and 24 h adhesion assays revealed a time-dependent bactericidal effect in the presence of GO, with death rates of adherent S. epidermidis and E. coli reaching ~80% after 24 h of contact with scaffolds with the highest GO concentration. Human fibroblasts cultured for up to 14 days were able to adhere and spread over the fibers, independently of the presence of GO. Overall, this work demonstrates the potential of GO-containing fibrous scaffolds to be used as biomaterials that hinder bacterial infection, while allowing human cells adhesion.
植入式医疗器械感染及随之而来的故障是一个严重的健康问题,其可源于植入部位细菌黏附、生长和随后生物膜的形成。基于石墨烯的材料,即氧化石墨烯(GO),当固定和暴露在聚合物基质中时,已被描述为有潜力的抗菌剂。这项工作专注于开发包含 GO 的抗菌和生物相容的 3D 纤维支架。使用湿法纺丝结合增材制造技术,制备了含有和不含有 GO 的聚(ε-己内酯)支架。对具有不同 GO 负载量的支架进行了物理化学特性评估,包括 GO 表面暴露、抗菌性能和促进人细胞黏附的能力。通过革兰氏阳性菌和革兰氏阴性菌的死活检测评估了抗菌性能。在存在 GO 的情况下,2 h 和 24 h 的黏附实验揭示了一种时间依赖性的杀菌作用,在与具有最高 GO 浓度的支架接触 24 h 后,附着的表皮葡萄球菌和大肠杆菌的死亡率达到约 80%。培养长达 14 天的人成纤维细胞能够黏附并在纤维上扩散,而与 GO 的存在无关。总的来说,这项工作表明,含有 GO 的纤维支架有可能被用作生物材料,阻止细菌感染,同时允许人细胞黏附。