UMR_MD1, U-1261, Aix-Marseille University, INSERM, IRBA, MCT, Faculté de Pharmacie, Marseille, France
UMR_MD1, U-1261, Aix-Marseille University, INSERM, IRBA, MCT, Faculté de Pharmacie, Marseille, France.
Antimicrob Agents Chemother. 2020 May 21;64(6). doi: 10.1128/AAC.00291-20.
The Cpx stress response is widespread among We previously reported a mutation in in a multidrug-resistant strain of isolated from a patient treated with imipenem. This mutation yields a single-amino-acid substitution (Y144N) located in the periplasmic sensor domain of CpxA. In this work, we sought to characterize this mutation in by using genetic and biochemical approaches. Here, we show that is an activated allele that confers resistance to β-lactams and aminoglycosides in a CpxR-dependent manner, by regulating the expression of the OmpF porin and the AcrD efflux pump, respectively. We also demonstrate the effect of the intimate interconnection between the Cpx system and peptidoglycan integrity on the expression of an exogenous AmpC β-lactamase by using imipenem as a cell wall-active antibiotic or by inactivating penicillin-binding proteins. Moreover, our data indicate that the Y144N substitution abrogates the interaction between CpxA and CpxP and increases phosphotransfer activity on CpxR. Because the addition of a strong AmpC inducer such as imipenem is known to cause abnormal accumulation of muropeptides (disaccharide-pentapeptide and -acetylglucosamyl-1,6-anhydro--acetylmuramyl-l-alanyl-d-glutamy--diaminopimelic-acid-d-alanyl-d-alanine) in the periplasmic space, we propose these molecules activate the Cpx system by displacing CpxP from the sensor domain of CpxA. Altogether, these data could explain why large perturbations to peptidoglycans caused by imipenem lead to mutational activation of the Cpx system and bacterial adaptation through multidrug resistance. These results also validate the Cpx system, in particular, the interaction between CpxA and CpxP, as a promising therapeutic target.
我们之前曾报道过,在对亚胺培南治疗的患者分离的一株多药耐药 中,发现了 中的一个突变。该突变导致单个氨基酸取代(Y144N),位于 CpxA 的周质感应域中。在这项工作中,我们试图通过遗传和生化方法来表征 中的这种突变。在这里,我们表明, 是一个激活等位基因,通过分别调节 OmpF 孔蛋白和 AcrD 外排泵的表达,以 CpxR 依赖的方式赋予对β-内酰胺类和氨基糖苷类的抗性。我们还通过使用亚胺培南作为细胞壁活性抗生素或使青霉素结合蛋白失活来证明 Cpx 系统与肽聚糖完整性之间的紧密联系对异源 AmpCβ-内酰胺酶表达的影响。此外,我们的数据表明,Y144N 取代破坏了 CpxA 和 CpxP 之间的相互作用,并增加了 CpxR 上的磷酸转移活性。由于已知添加强 AmpC 诱导剂(如亚胺培南)会导致周质空间中寡肽(二糖-五肽和 -乙酰葡糖胺-1,6-脱水-乙酰基-乳酰基-l-丙氨酰-d-谷氨酰-d-二氨基庚二酸-d-丙氨酸-d-丙氨酸)的异常积累,我们提出这些分子通过从 CpxA 的感应域中置换 CpxP 来激活 Cpx 系统。总的来说,这些数据可以解释为什么亚胺培南对肽聚糖的大干扰会导致 Cpx 系统的突变激活和通过多药耐药的细菌适应。这些结果还验证了 Cpx 系统,特别是 CpxA 和 CpxP 之间的相互作用,作为一个有前途的治疗靶点。