Dietz H, Pfeifle D, Wiedemann B
Institut für Medizinische Mikrobiologie und Immunologie, University of Bonn, Germany.
Antimicrob Agents Chemother. 1997 Oct;41(10):2113-20. doi: 10.1128/AAC.41.10.2113.
Beta-lactamase induction in Enterobacter cloacae, which is linked to peptidoglycan recycling, was investigated by high-performance liquid chromatographic analysis of cell wall fragments in genetically defined cells of Escherichia coli. After treatment of cells with beta-lactams, we detected an increase in a D-tripeptide (disaccharide-tripeptide, N-acetylglucosaminyl-1,6-anhydro-N-acetylmuramyl-L-alanyl-D-glutamyl-mes o-diaminopimelic acid), aD-tetrapeptide (disaccharide-tetrapeptide, N-acetylglucosaminyl-1,6-anhydro-N-acetylmuramyl-L-alanyl-D-glutamyl-mes o-diaminopimelic acid-D-alanine), and aD-pentapeptide (disaccharide-pentapeptide, N-acetylglucosaminyl-1,6-anhydro-N-acetylmuramyl-L-alanyl-D-glutamyl-mes o-diaminopimelic acid-D-alanyl-D-alanine)levels in the periplasms of bacterial cells. Furthermore, only the accumulation of aD-pentapeptide correlates with the beta-lactamase-inducing capacity of the beta-lactam antibiotic. The transmembrane protein AmpG transports all three aD-peptides into the cytoplasm, where they are degraded into the corresponding monosaccharide peptides. In the absence of AmpD the constitutive overproduction of beta-lactamase is accompanied by an accumulation of aM-tripeptide (monosaccharide-tripeptide, anhydro-N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid) and aM-pentapeptide (L1,6-anhydro-N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid-D-alanyl-D-alanine), but not aM-tetrapeptide (anhydro-N-acetylmuramyl-L-alanyl-D-glutamyl-meso-diaminopimelic acid-D-alanine), in the cytoplasm. Only the amount of aM-pentapeptide is increased upon treatment with imipenem. These findings indicate that aD-pentapeptide is the main periplasmic muropeptide, which is converted into the cytoplasmic signal molecule for beta-lactamase induction, the aM-pentapeptide.
通过对大肠杆菌基因定义细胞中细胞壁片段的高效液相色谱分析,研究了与肽聚糖循环相关的阴沟肠杆菌中的β-内酰胺酶诱导情况。用β-内酰胺处理细胞后,我们检测到细菌细胞周质中一种D-三肽(二糖-三肽,N-乙酰葡糖胺基-1,6-脱水-N-乙酰胞壁酰-L-丙氨酰-D-谷氨酰-内消旋二氨基庚二酸)、一种D-四肽(二糖-四肽,N-乙酰葡糖胺基-1,6-脱水-N-乙酰胞壁酰-L-丙氨酰-D-谷氨酰-内消旋二氨基庚二酸-D-丙氨酸)和一种D-五肽(二糖-五肽,N-乙酰葡糖胺基-1,6-脱水-N-乙酰胞壁酰-L-丙氨酰-D-谷氨酰-内消旋二氨基庚二酸-D-丙氨酰-D-丙氨酸)水平增加。此外,只有D-五肽的积累与β-内酰胺抗生素的β-内酰胺酶诱导能力相关。跨膜蛋白AmpG将所有三种D-肽转运到细胞质中,在那里它们被降解为相应的单糖肽。在没有AmpD的情况下,β-内酰胺酶的组成型过量产生伴随着细胞质中一种M-三肽(单糖-三肽,脱水-N-乙酰胞壁酰-L-丙氨酰-D-谷氨酰-内消旋二氨基庚二酸)和一种M-五肽(L1,6-脱水-N-乙酰胞壁酰-L-丙氨酰-D-谷氨酰-内消旋二氨基庚二酸-D-丙氨酰-D-丙氨酸)的积累,但不包括M-四肽(脱水-N-乙酰胞壁酰-L-丙氨酰-D-谷氨酰-内消旋二氨基庚二酸-D-丙氨酸)。用亚胺培南处理后,只有M-五肽的量增加。这些发现表明,D-五肽是主要的周质胞壁肽,它被转化为用于β-内酰胺酶诱导的细胞质信号分子,即M-五肽。