Ghosh Monoj, Jana Sadhan C
Department of Polymer Engineering, The University of Akron, 250, South Forge Street, Akron, OH 44325-0301, USA.
Materials (Basel). 2020 Mar 27;13(7):1539. doi: 10.3390/ma13071539.
We report the morphologies of tin-doped indium oxide (ITO) hollow microtubes and porous nanofibers produced from precursor solutions of polyvinylpyrrolidone (PVP), indium chloride (InCl), and stannic chloride (SnCl). The polymer precursor fibers are produced via a facile gas jet fiber (GJF) spinning process and subsequently calcined to produce ITO materials. The morphology shows strong dependence on heating rate in calcination step. Solid porous ITO nanofibers result from slow heating rates while hollow tubular ITO microfibers with porous shells are produced at high heating rates when calcined at a peak temperature of 700 °C. The mechanisms of formation of different morphological forms are proposed. The ITO fibers are characterized using several microscopy tools and thermogravimetric analysis. The concentration of inorganic salts in precursor solution is identified as a key factor in determining the porosity of the shell in hollow fibers. The data presented in this paper show that GJF method may be suitable for fabrication of hollow and multi-tubular metal oxide nanofibers from other inorganic precursor materials.
我们报道了由聚乙烯吡咯烷酮(PVP)、氯化铟(InCl)和氯化锡(SnCl)的前驱体溶液制备的锡掺杂氧化铟(ITO)中空微管和多孔纳米纤维的形态。聚合物前驱体纤维通过简便的气体喷射纤维(GJF)纺丝工艺制备,随后进行煅烧以制备ITO材料。形态在煅烧步骤中显示出对加热速率的强烈依赖性。当在700℃的峰值温度下煅烧时,缓慢的加热速率会产生实心多孔ITO纳米纤维,而高加热速率会产生具有多孔壳的中空管状ITO微纤维。提出了不同形态形成的机制。使用几种显微镜工具和热重分析对ITO纤维进行了表征。前驱体溶液中无机盐的浓度被确定为决定中空纤维壳层孔隙率的关键因素。本文给出的数据表明,GJF方法可能适用于由其他无机前驱体材料制备中空和多管金属氧化物纳米纤维。