Suppr超能文献

胰腺导管腺癌相关异常糖基化的发现:基于凝集素微阵列的组织糖组学分析与公开转录组数据集的多边方法

Discovery of Pancreatic Ductal Adenocarcinoma-Related Aberrant Glycosylations: A Multilateral Approach of Lectin Microarray-Based Tissue Glycomic Profiling With Public Transcriptomic Datasets.

作者信息

Wagatsuma Takanori, Nagai-Okatani Chiaki, Matsuda Atsushi, Masugi Yohei, Imaoka Masako, Yamazaki Ken, Sakamoto Michiie, Kuno Atsushi

机构信息

Project for Utilizing Glycans in the Development of Innovative Drug Discovery Technologies, Japan Bioindustry Association (JBA), Tokyo, Japan.

Center for Integrated Medical Research, Keio University School of Medicine, Tokyo, Japan.

出版信息

Front Oncol. 2020 Mar 13;10:338. doi: 10.3389/fonc.2020.00338. eCollection 2020.

Abstract

Aberrant protein glycosylation is one of the most notable features in cancerous tissues, and thereby glycoproteins with disease-relevant glycosylation alterations are fascinating targets for the development of biomarkers and therapeutic agents. For this purpose, a reliable strategy is needed for the analysis of glycosylation alterations occurring on specific glycoproteins during the progression of cancer. Here, we propose a bilateral approach combining lectin microarray-based tissue glycomic profiling and database-derived transcriptomic datasets. First, lectin microarray was used to perform differential glycomic profiling of crude extracts derived from non-tumor and tumor regions of frozen tissue sections from pancreatic ductal adenocarcinoma (PDAC). This analysis revealed two notable tissue glycome alterations in PDAC samples: increases in sialylated glycans and bisecting -acetylglucosamine and a decrease in ABO blood group antigens. To examine aberrations in the glycosylation machinery related to these glycomic alterations, we next employed public datasets of gene expression profiles in cancerous and normal pancreases provided by The Cancer Genome Atlas and the Genotype-Tissue Expression projects, respectively. In this analysis, glycosyltransferases responsible for the glycosylation alterations showed aberrant gene expression in the cancerous tissues, consistent with the tissue glycomic profiles. The correlated alterations in glycosyltransferase expression and tissue glycomics were then evaluated by differential glycan profiling of a membrane -glycoprotein, basigin, expressed in tumor and non-tumor pancreatic cells. The focused differential glycomic profiling for endogenous basigin derived from non-tumor and cancerous regions of PDAC tissue sections demonstrated that PDAC-relevant glycan alterations of basigin closely reflected the notable features in the disease-specific alterations in the tissue glycomes. In conclusion, the present multi-omics strategy using public transcriptomic datasets and experimental glycomic profiling using a tiny amount of clinical specimens successfully demonstrated that basigin is a representative -glycoprotein that reflects PDAC-related aberrant glycosylations. This study indicates the usefulness of large public data sets such as the gene expression profiles of glycosylation-related genes for evaluation of the highly sensitive tissue glycomic profiling results. This strategy is expected to be useful for the discovery of novel glyco-biomarkers and glyco-therapeutic targets.

摘要

异常蛋白质糖基化是癌组织最显著的特征之一,因此,具有与疾病相关糖基化改变的糖蛋白是生物标志物和治疗药物开发的迷人靶点。为此,需要一种可靠的策略来分析癌症进展过程中特定糖蛋白上发生的糖基化改变。在此,我们提出一种双边方法,将基于凝集素微阵列的组织糖组学分析与数据库衍生的转录组数据集相结合。首先,使用凝集素微阵列对来自胰腺导管腺癌(PDAC)冷冻组织切片的非肿瘤和肿瘤区域的粗提物进行差异糖组学分析。该分析揭示了PDAC样本中两个显著的组织糖组改变:唾液酸化聚糖和平分型N-乙酰葡糖胺增加,以及ABO血型抗原减少。为了研究与这些糖组改变相关的糖基化机制异常,我们接下来分别使用了癌症基因组图谱和基因型-组织表达项目提供的癌性和正常胰腺基因表达谱的公共数据集。在该分析中,负责糖基化改变的糖基转移酶在癌组织中显示出异常的基因表达,这与组织糖组图谱一致。然后,通过对在肿瘤和非肿瘤胰腺细胞中表达的膜糖蛋白基底素进行差异糖谱分析,评估糖基转移酶表达和组织糖组学的相关改变。对来自PDAC组织切片的非肿瘤和癌性区域的内源性基底素进行的聚焦差异糖组学分析表明,基底素与PDAC相关的聚糖改变密切反映了组织糖组中疾病特异性改变的显著特征。总之,目前使用公共转录组数据集的多组学策略以及使用少量临床标本的实验性糖组学分析成功证明,基底素是一种反映PDAC相关异常糖基化的代表性糖蛋白。这项研究表明,诸如糖基化相关基因的基因表达谱等大型公共数据集对于评估高度敏感的组织糖组学分析结果是有用的。该策略有望用于发现新型糖生物标志物和糖治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c188/7082313/04456f3c9038/fonc-10-00338-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验