Masi Emily Battinelli, Levy Todd, Tsaava Tea, Bouton Chad E, Tracey Kevin J, Chavan Sangeeta S, Zanos Theodoros P
Zucker School of Medicine at Hofstra/Northwell, Heampstead, NY USA.
2Institute of Bioelectronic Medicine, Feinstein Institute for Medical Research, Manhasset, NY 11030 USA.
Bioelectron Med. 2019 Jul 11;5:9. doi: 10.1186/s42234-019-0025-z. eCollection 2019.
Glucose is a crucial energy source. In humans, it is the primary sugar for high energy demanding cells in brain, muscle and peripheral neurons. Deviations of blood glucose levels from normal levels for an extended period of time is dangerous or even fatal, so regulation of blood glucose levels is a biological imperative. The vagus nerve, comprised of sensory and motor fibres, provides a major anatomical substrate for regulating metabolism. While prior studies have implicated the vagus nerve in the neurometabolic interface, its specific role in either the afferent or efferent arc of this reflex remains elusive.
Here we use recently developed methods to isolate and decode specific neural signals acquired from the surface of the vagus nerve in BALB/c wild type mice to identify those that respond robustly to hypoglycemia. We also attempted to decode neural signals related to hyperglycemia. In addition to wild type mice, we analyzed the responses to acute hypo- and hyperglycemia in transient receptor potential cation channel subfamily V member 1 (TRPV1) cell depleted mice. The decoding algorithm uses neural signals as input and reconstructs blood glucose levels.
Our algorithm was able to reconstruct the blood glucose levels with high accuracy (median error 18.6 mg/dl). Hyperglycemia did not induce robust vagus nerve responses, and deletion of TRPV1 nociceptors attenuated the hypoglycemia-dependent vagus nerve signals.
These results provide insight to the sensory vagal signaling that encodes hypoglycemic states and suggest a method to measure blood glucose levels by decoding nerve signals.
Not applicable.
葡萄糖是一种关键的能量来源。在人类中,它是大脑、肌肉和外周神经元中对能量需求较高的细胞的主要糖类。血糖水平长时间偏离正常水平是危险的甚至是致命的,因此调节血糖水平是一项生物学上的必要任务。迷走神经由感觉纤维和运动纤维组成,为调节新陈代谢提供了主要的解剖学基础。虽然先前的研究表明迷走神经参与了神经代谢界面,但它在这种反射的传入或传出弧中的具体作用仍然不清楚。
在这里,我们使用最近开发的方法来分离和解码从BALB/c野生型小鼠迷走神经表面获取的特定神经信号,以识别那些对低血糖有强烈反应的信号。我们还试图解码与高血糖相关的神经信号。除了野生型小鼠,我们还分析了瞬时受体电位阳离子通道亚家族V成员1(TRPV1)细胞缺失的小鼠对急性低血糖和高血糖的反应。解码算法将神经信号作为输入并重建血糖水平。
我们的算法能够高精度地重建血糖水平(中位误差18.6毫克/分升)。高血糖并未诱导强烈的迷走神经反应,而TRPV1伤害感受器的缺失减弱了低血糖依赖性迷走神经信号。
这些结果为编码低血糖状态的感觉迷走神经信号提供了见解,并提出了一种通过解码神经信号来测量血糖水平的方法。
不适用。