Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States.
Physical Sciences Division, Physical & Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States.
J Am Chem Soc. 2020 Apr 15;142(15):6991-7000. doi: 10.1021/jacs.9b13273. Epub 2020 Apr 1.
The structure and ultrafast dynamics of the electric double layer (EDL) are central to chemical reactivity and physical properties at solid/aqueous interfaces. While the Gouy-Chapman-Stern model is widely used to describe EDLs, it is solely based on the macroscopic electrostatic attraction of electrolytes for the charged surfaces. Structure and dynamics in the Stern layer are, however, more complex because of competing effects due to the localized surface charge distribution, surface-solvent-ion correlations, and the interfacial hydrogen bonding environment. Here, we report combined time-resolved vibrational sum frequency generation (TR-vSFG) spectroscopy with ab initio DFT-based molecular dynamics simulations (AIMD/DFT-MD) to get direct access to the molecular-level understanding of how ions change the structure and dynamics of the EDL. We show that innersphere adsorbed ions tune the hydrophobicity of the silica-aqueous interface by shifting the structural makeup in the Stern layer from dominant water-surface interactions to water-water interactions. This drives an initially inhomogeneous interfacial water coordination landscape observed at the neat interface toward a homogeneous, highly interconnected in-plane 2D hydrogen bonding (2D-HB) network at the ionic interface, reminiscent of the canonical, hydrophobic air-water interface. This ion-induced transformation results in a characteristic decrease of the vibrational lifetime () of excited interfacial O-H stretching modes from ∼ 600 fs to ∼ 250 fs. Hence, we propose that the determined by TR-vSFG in combination with DFT-MD simulations can be widely used for a quantitative spectroscopic probe of the ion kosmotropic/chaotropic effect at aqueous interfaces as well as of the ion-induced surface hydrophobicity.
双电层(EDL)的结构和超快动力学是固/液界面化学反应性和物理性质的核心。虽然Gouy-Chapman-Stern 模型被广泛用于描述 EDL,但它仅仅基于电解质对带电表面的宏观静电吸引。然而,由于局部表面电荷分布、表面-溶剂-离子相关以及界面氢键环境的竞争效应,Stern 层中的结构和动力学更为复杂。在这里,我们报告了结合时间分辨振动和频和光谱(TR-vSFG)光谱与基于第一性原理密度泛函理论的分子动力学模拟(AIMD/DFT-MD),直接了解离子如何改变 EDL 的结构和动力学。我们表明,内球吸附离子通过将 Stern 层中的结构组成从主要的水-表面相互作用转变为水-水相互作用,从而调节二氧化硅-水界面的疏水性。这导致在纯界面上观察到的初始不均匀界面水配位景观向离子界面处的均匀、高度互连的平面 2D 氢键(2D-HB)网络转变,类似于典型的疏水性空气-水界面。这种离子诱导的转变导致激发界面 O-H 伸缩模式的振动寿命()从 ∼600 fs 显著降低到 ∼250 fs。因此,我们提出,TR-vSFG 与 DFT-MD 模拟相结合确定的可以广泛用于定量探测水界面上离子的同晶/反同晶效应以及离子诱导的表面疏水性的光谱探针。