Adimy Mostafa, Chekroun Abdennasser, Ferreira Claudia Pio
Inria, CNRS UMR 5208, Institut Camille Jordan, Université Lyon 1, F-69200 - Villeurbanne, France.
Laboratoire d'Analyse Nonlinéaire et Mathématiques Appliquees, Université de Tlemcen-Tlemcen 13000, Algeria.
Math Biosci Eng. 2019 Nov 20;17(2):1329-1354. doi: 10.3934/mbe.2020067.
In this paper, we are concerned with an epidemic model of susceptible, infected and recovered (SIR) population dynamic by considering an age-structured phase of protection with limited duration, for instance due to vaccination or drugs with temporary immunity. The model is reduced to a delay differential-difference system, where the delay is the duration of the protection phase. We investigate the local asymptotic stability of the two steady states: disease-free and endemic. We also establish when the endemic steady state exists, the uniform persistence of the disease. We construct quadratic and logarithmic Lyapunov functions to establish the global asymptotic stability of the two steady states. We prove that the global stability is completely determined by the basic reproduction number.
在本文中,我们考虑一个具有有限持续时间的年龄结构保护阶段的易感、感染和康复(SIR)人群动态的流行病模型,例如由于接种疫苗或具有临时免疫力的药物。该模型被简化为一个延迟微分差分系统,其中延迟是保护阶段的持续时间。我们研究了两个稳态的局部渐近稳定性:无病稳态和地方病稳态。我们还确定了地方病稳态存在时疾病的一致持久性。我们构造二次和对数李雅普诺夫函数来建立两个稳态的全局渐近稳定性。我们证明全局稳定性完全由基本再生数决定。