From the Division of Endocrinology, Metabolism and Lipid Research (X.W., S.A., L.Y., C.F., S.L.S., Q.Z., C.F.S.), Washington University, St Louis, MO.
Section of Vascular Surgery, Department of Surgery (M.Z.), Washington University, St Louis, MO.
Circ Res. 2020 Jul 3;127(2):249-265. doi: 10.1161/CIRCRESAHA.120.316752. Epub 2020 Apr 1.
Peripheral artery disease, common in metabolic syndrome and diabetes mellitus, responds poorly to medical interventions and is characterized by chronic vessel immaturity leading to lower extremity amputations.
To define the role of reversible palmitoylation at the endothelium in the maintenance of vascular maturity.
Endothelial knockout of the depalmitoylation enzyme APT-1 (acyl-protein thioesterase 1) in mice impaired recovery from chronic hindlimb ischemia, a model of peripheral artery disease. Endothelial APT-1 deficiency decreased fibronectin processing, disrupted adherens junctions, and inhibited in vitro lumen formation. In an unbiased palmitoylation proteomic screen of endothelial cells from genetically modified mice, R-Ras, known to promote vessel maturation, was preferentially affected by APT-1 deficiency. R-Ras was validated as an APT-1 substrate, and click chemistry analyses demonstrated increased R-Ras palmitoylation in cells with APT-1 deficiency. APT-1 enzyme activity was decreased in endothelial cells from mice. Hyperglycemia decreased APT-1 activity in human umbilical vein endothelial cells, due, in part, to altered acetylation of the APT-1 protein. Click chemistry analyses demonstrated increased R-Ras palmitoylation in the setting of hyperglycemia. Altered R-Ras trafficking, increased R-Ras palmitoylation, and fibronectin retention were found in diabetes mellitus models. Loss of R-Ras depalmitoylation caused by APT-1 deficiency constrained R-Ras membrane trafficking, as shown by total internal reflection fluorescence imaging. To rescue cellular phenotypes, we generated an R-Ras molecule with an inserted hydrophilic domain to circumvent membrane rigidity caused by defective palmitoylation turnover. This modification corrected R-Ras membrane trafficking, restored fibronectin processing, increased adherens junctions, and rescued defective lumen formation induced by APT-1 deficiency.
These results suggest that endothelial depalmitoylation is regulated by the metabolic milieu and controls plasma membrane partitioning to maintain vascular homeostasis.
外周动脉疾病常见于代谢综合征和糖尿病患者,对医学干预反应不佳,其特征为慢性血管不成熟,导致下肢截肢。
定义内皮细胞中可逆棕榈酰化在维持血管成熟中的作用。
在小鼠中内皮细胞敲除脱酰基酶 APT-1(酰基蛋白硫酯酶 1),会损害慢性后肢缺血(一种外周动脉疾病模型)的恢复。内皮细胞 APT-1 缺乏会减少纤维连接蛋白的加工,破坏黏着连接,并抑制体外管腔形成。在对遗传修饰小鼠内皮细胞进行的无偏棕榈酰化蛋白质组筛选中,已知可促进血管成熟的 R-Ras 优先受到 APT-1 缺乏的影响。R-Ras 被验证为 APT-1 的底物,点击化学分析表明,APT-1 缺乏的细胞中 R-Ras 棕榈酰化增加。 中的内皮细胞 APT-1 酶活性降低。高血糖会降低人脐静脉内皮细胞中的 APT-1 活性,部分原因是 APT-1 蛋白的乙酰化改变。点击化学分析表明,在高血糖环境中 R-Ras 棕榈酰化增加。在糖尿病模型中发现了 R-Ras 易位改变、R-Ras 棕榈酰化增加和纤维连接蛋白滞留。由于 APT-1 缺乏导致的 R-Ras 脱棕榈酰化丧失会导致 R-Ras 膜易位受到限制,这可以通过全内反射荧光成像来证明。为了挽救细胞表型,我们生成了一种带有插入亲水结构域的 R-Ras 分子,以避免由于脱棕榈酰化周转缺陷引起的膜刚性。这种修饰纠正了 R-Ras 的膜易位,恢复了纤维连接蛋白的加工,增加了黏着连接,并纠正了 APT-1 缺乏引起的管腔形成缺陷。
这些结果表明,内皮细胞脱棕榈酰化受代谢环境的调节,并控制质膜分区以维持血管稳态。