State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.
Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China.
Clin Cancer Res. 2020 Jul 15;26(14):3760-3770. doi: 10.1158/1078-0432.CCR-19-4207. Epub 2020 Mar 31.
Adults with T-cell lymphoblastic lymphoma (T-LBL) generally benefit from treatment with acute lymphoblastic leukemia (ALL)-like regimens, but approximately 40% will relapse after such treatment. We evaluated the value of CpG methylation in predicting relapse for adults with T-LBL treated with ALL-like regimens.
A total of 549 adults with T-LBL from 27 medical centers were included in the analysis. Using the Illumina Methylation 850K Beadchip, 44 relapse-related CpGs were identified from 49 T-LBL samples by two algorithms: least absolute shrinkage and selector operation (LASSO) and support vector machine-recursive feature elimination (SVM-RFE). We built a four-CpG classifier using LASSO Cox regression based on association between the methylation level of CpGs and relapse-free survival in the training cohort ( = 160). The four-CpG classifier was validated in the internal testing cohort ( = 68) and independent validation cohort ( = 321).
The four-CpG-based classifier discriminated patients with T-LBL at high risk of relapse in the training cohort from those at low risk ( < 0.001). This classifier also showed good predictive value in the internal testing cohort ( < 0.001) and the independent validation cohort ( < 0.001). A nomogram incorporating five independent prognostic factors including the CpG-based classifier, lactate dehydrogenase levels, Eastern Cooperative Oncology Group performance status, central nervous system involvement, and / status showed a significantly higher predictive accuracy than each single variable. Stratification into different subgroups by the nomogram helped identify the subset of patients who most benefited from more intensive chemotherapy and/or sequential hematopoietic stem cell transplantation.
Our four-CpG-based classifier could predict disease relapse in patients with T-LBL, and could be used to guide treatment decision.
成人 T 细胞淋巴母细胞淋巴瘤(T-LBL)通常受益于急性淋巴细胞白血病(ALL)样方案的治疗,但约有 40%的患者在接受此类治疗后会复发。我们评估了 CpG 甲基化在预测接受 ALL 样方案治疗的成人 T-LBL 患者复发中的价值。
共有 27 个医疗中心的 549 名成人 T-LBL 患者纳入分析。使用 Illumina Methylation 850K Beadchip,通过两种算法:最小绝对值收缩和选择器操作(LASSO)和支持向量机递归特征消除(SVM-RFE),从 49 个 T-LBL 样本中鉴定出 44 个与复发相关的 CpG。我们使用基于 LASSO Cox 回归的四个 CpG 分类器,基于训练队列中 CpG 甲基化水平与无复发生存率之间的关联(=160)。在内部测试队列(=68)和独立验证队列(=321)中验证了四个 CpG 分类器。
基于四个 CpG 的分类器在训练队列中区分了 T-LBL 患者的高复发风险和低复发风险(<0.001)。该分类器在内部测试队列(<0.001)和独立验证队列(<0.001)中也表现出良好的预测价值。纳入包括基于 CpG 的分类器、乳酸脱氢酶水平、东部合作肿瘤组表现状态、中枢神经系统受累和/或状态在内的五个独立预后因素的列线图显示出比每个单一变量更高的预测准确性。根据列线图进行的不同亚组分层有助于确定最受益于强化化疗和/或序贯造血干细胞移植的患者亚组。
我们的基于四个 CpG 的分类器可以预测 T-LBL 患者的疾病复发,并可用于指导治疗决策。