Suppr超能文献

基于基因表达的标志可预测成人 T 细胞淋巴母细胞淋巴瘤的生存情况:一项多中心研究。

A gene-expression-based signature predicts survival in adults with T-cell lymphoblastic lymphoma: a multicenter study.

机构信息

State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, PR China.

Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, PR China.

出版信息

Leukemia. 2020 Sep;34(9):2392-2404. doi: 10.1038/s41375-020-0757-5. Epub 2020 Feb 20.

Abstract

We aimed to establish a discriminative gene-expression-based classifier to predict survival outcomes of T-cell lymphoblastic lymphoma (T-LBL) patients. After exploring global gene-expression profiles of progressive (n = 22) vs. progression-free (n = 28) T-LBL patients, 43 differentially expressed mRNAs were identified. Then an eleven-gene-based classifier was established using LASSO Cox regression based on NanoString quantification. In the training cohort (n = 169), high-risk patients stratified using the classifier had significantly lower progression-free survival (PFS: hazards ratio 4.123, 95% CI 2.565-6.628; p < 0.001), disease-free survival (DFS: HR 3.148, 95% CI 1.857-5.339; p < 0.001), and overall survival (OS: HR 3.790, 95% CI 2.237-6.423; p < 0.001) compared with low-risk patients. The prognostic accuracy of the classifier was validated in the internal testing (n = 84) and independent validation cohorts (n = 360). A prognostic nomogram consisting of five independent variables including the classifier, lactate dehydrogenase levels, ECOG-PS, central nervous system involvement, and NOTCH1/FBXW7 status showed significantly greater prognostic accuracy than each single variable alone. The addition of a five-miRNA-based signature further enhanced the accuracy of this nomogram. Furthermore, patients with a nomogram score ≥154.2 significantly benefited from the BFM protocol. In conclusion, our nomogram comprising the 11-gene-based classifier may make contributions to individual prognosis prediction and treatment decision-making.

摘要

我们旨在建立一个基于基因表达的判别分类器,以预测 T 细胞淋巴母细胞淋巴瘤(T-LBL)患者的生存结局。在探索进展性(n=22)与无进展性(n=28)T-LBL 患者的全基因表达谱后,我们发现了 43 个差异表达的 mRNA。然后,我们使用基于 NanoString 定量的 LASSO Cox 回归建立了一个包含 11 个基因的分类器。在训练队列(n=169)中,使用该分类器分层的高危患者的无进展生存期(PFS:危险比 4.123,95%CI 2.565-6.628;p<0.001)、无疾病生存期(DFS:HR 3.148,95%CI 1.857-5.339;p<0.001)和总生存期(OS:HR 3.790,95%CI 2.237-6.423;p<0.001)显著低于低危患者。该分类器的预后准确性在内部测试(n=84)和独立验证队列(n=360)中得到了验证。一个包含五个独立变量的预后列线图,包括分类器、乳酸脱氢酶水平、ECOG-PS、中枢神经系统受累和 NOTCH1/FBXW7 状态,与每个单一变量相比,具有显著更高的预后准确性。加入一个基于五个 miRNA 的特征进一步提高了该列线图的准确性。此外,列线图评分≥154.2 的患者从 BFM 方案中显著获益。总之,我们的列线图包括基于 11 个基因的分类器,可能有助于个体预后预测和治疗决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验