Gutiérrez-Vega Julio C
Opt Lett. 2020 Apr 1;45(7):1639-1642. doi: 10.1364/OL.387644.
We determine the optical phase $ \psi $ψ (dynamic and geometric) introduced by a system described by an inhomogeneous Jones matrix. We show that there are two possible scenarios: (a) $ \psi $ψ has a finite range of $ \psi \in [{\psi _{\min }},{\psi _{\max }}] $ψ∈[ψ,ψ]. We calculate both limits and their corresponding polarization states analytically. (b) $ \psi $ψ spans the full range of $ \psi \in ( - \pi ,\pi ] $ψ∈(-π,π]. This scenario leads to the existence of two input polarization states whose output states are orthogonal. We call these states ortho-transmission states (OTSs) and find them analytically. We study the inverse problem of designing an optical system with OTSs given by the user.
我们确定由非均匀琼斯矩阵描述的系统所引入的光学相位ψ(动态相位和几何相位)。我们表明存在两种可能的情况:(a)ψ具有有限范围ψ∈[ψmin,ψmax]。我们通过解析计算出这两个极限及其相应的偏振态。(b)ψ跨越ψ∈(-π,π]的整个范围。这种情况导致存在两个输入偏振态,其输出态是正交的。我们将这些态称为正交传输态(OTS)并通过解析找到它们。我们研究由用户给定的具有OTS的光学系统设计的逆问题。