Suppr超能文献

大麻素甲酰胺对胃迷走传入饱腹感信号的调节作用取决于营养状况。

Modulatory effect of methanandamide on gastric vagal afferent satiety signals depends on nutritional status.

机构信息

Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA, 5005, Australia.

Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia.

出版信息

J Physiol. 2020 Jun;598(11):2169-2182. doi: 10.1113/JP279449. Epub 2020 May 1.

Abstract

SIGNIFICANCE STATEMENT

Gastric vagal afferent responses to tension are dampened in high fat diet-induced obesity. Endocannabinoids are known to dose-dependently inhibit and excite gastric vagal afferents but their effect on gastric vagal afferents in diet-induced obesity are unknown. In individual gastric vagal afferent neurons of diet-induced obese mice the co-expression of components of the endocannabinoid system, including CB1, GHSR, TRPV1 and FAAH, was increased compared with lean mice. In high fat diet-induced obese mice, methanandamide only inhibited gastric vagal afferent responses to tension, possibly due to the observed change in the balance of receptors, hormones and breakdown enzymes in this system. Collectively, these data suggest that endocannabinoid signalling, by gastric vagal afferents, is altered in diet-induced obesity which may impact satiety and gastrointestinal function.

ABSTRACT

Gastric vagal afferents (GVAs) play a role in appetite regulation. The endocannabinoid anandamide (AEA) dose-dependently inhibits and excites tension-sensitive GVAs. However, it is also known that high fat diet (HFD) feeding alters GVA responses to stretch. The aim of this study was to determine the role of AEA in GVA signalling in lean and HFD-induced obese mice. Male C57BL/6 mice were fed (12 weeks) a standard laboratory diet (SLD) or HFD. Protein and mRNA expression of components of the cannabinoid system was determined in individual GVA cell bodies and the gastric mucosa. An in vitro GVA preparation was used to assess the effect of methanandamide (mAEA) on tension-sensitive GVAs and the second messenger pathways involved. In individual GVA cell bodies, cannabinoid 1 (CB1) and ghrelin (GHSR) receptor mRNA was higher in HFD mice than SLD mice. Conversely, gastric mucosal AEA and ghrelin protein levels were lower in HFD mice than SLD mice. In SLD mice, mAEA exerted dose-dependent inhibitory and excitatory effects on tension-sensitive GVAs. Only an inhibitory effect of mAEA was observed in HFD mice. The excitatory effect of mAEA was dependent on CB1, transient receptor potential vanilloid 1 (TRPV1) and the protein kinase C. Conversely, the inhibitory effect was dependent on CB1, growth hormone secretagogue receptor, TRPV1 and the protein kinase A. Endocannabinoids, acting through CB1 and TRPV1, have a pivotal role in modulating GVA satiety signals depending on the second messenger pathway utilised. In HFD mice only an inhibitory effect was observed. These changes may contribute to the development and/or maintenance of obesity.

摘要

意义陈述

高脂饮食诱导肥胖会抑制胃迷走传入纤维对张力的反应。内源性大麻素已知可剂量依赖性地抑制和兴奋胃迷走传入纤维,但它们在饮食诱导肥胖中的作用尚不清楚。与瘦鼠相比,肥胖诱导的小鼠个体胃迷走传入神经元中内源性大麻素系统的组成部分,包括 CB1、GHSR、TRPV1 和 FAAH 的共表达增加。在高脂饮食诱导肥胖的小鼠中,甲酰胺仅抑制胃迷走传入纤维对张力的反应,这可能是由于观察到该系统中受体、激素和分解酶的平衡发生了变化。总的来说,这些数据表明,饮食诱导肥胖会改变胃迷走传入纤维的内源性大麻素信号传递,这可能会影响饱腹感和胃肠道功能。

摘要

胃迷走传入纤维(GVAs)在食欲调节中起作用。内源性大麻素(AEA)可剂量依赖性地抑制和兴奋张力敏感的 GVAs。然而,众所周知,高脂饮食(HFD)喂养会改变 GVA 对拉伸的反应。本研究旨在确定 AEA 在瘦鼠和 HFD 诱导肥胖小鼠的 GVA 信号传导中的作用。雄性 C57BL/6 小鼠分别用标准实验室饮食(SLD)或 HFD 喂养(12 周)。测定个体 GVA 细胞体和胃黏膜中大麻素系统成分的蛋白和 mRNA 表达。使用体外 GVA 制剂评估甲酰胺(mAEA)对张力敏感的 GVA 及其涉及的第二信使途径的影响。在个体 GVA 细胞体中,HFD 小鼠的大麻素 1(CB1)和生长激素释放肽(GHSR)受体 mRNA 高于 SLD 小鼠。相反,HFD 小鼠的胃黏膜 AEA 和生长激素释放肽蛋白水平低于 SLD 小鼠。在 SLD 小鼠中,mAEA 对张力敏感的 GVA 表现出剂量依赖性的抑制和兴奋作用。仅在 HFD 小鼠中观察到 mAEA 的抑制作用。mAEA 的兴奋作用依赖于 CB1、瞬时受体电位香草酸 1(TRPV1)和蛋白激酶 C。相反,抑制作用依赖于 CB1、生长激素释放肽受体、TRPV1 和蛋白激酶 A。内源性大麻素通过 CB1 和 TRPV1 发挥作用,根据所使用的第二信使途径,在调节 GVA 饱腹感信号方面发挥关键作用。在 HFD 小鼠中仅观察到抑制作用。这些变化可能有助于肥胖的发展和/或维持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验