Huang Yan, Cao Shuang, Xie Xin, Wu Chao, Jamil Sidra, Zhao Qinglan, Chang Baobao, Wang Ying, Wang Xianyou
National Base for International Science & Technology Cooperation, School of Chemistry, Xiangtan University, Xiangtan411105, Hunan, China.
National Local Joint Engineering Laboratory for Key Materials of New Energy Storage Battery, School of Chemistry, Xiangtan University, Xiangtan411105, Hunan, China.
ACS Appl Mater Interfaces. 2020 Apr 29;12(17):19483-19494. doi: 10.1021/acsami.0c01558. Epub 2020 Apr 15.
A crucial challenge for the commercialization of Ni-rich layered cathodes (LiNiCoAlO) is capacity decay during the cycling process, which originates from their interfacial instability and structural degradation. Herein, a one-step, dual-modified strategy is put forward to in situ synthesize the yttrium (Y)-doped and yttrium orthophosphate (YPO)-modified LiNiCoAlO cathode material. It is confirmed that the YPO coating layer as a good ion conductor can stabilize the solid-electrolyte interface, while the formative strong Y-O bond can bridle TM-O slabs to intensify the lattice structure in the state of deep delithium (>4.3 V). In particular, both the combined advantages effectively withstand the anisotropic strain generated upon the H2-H3 phase transition and further alleviate the crack generation in unit-cell dimensions, assuring a high-capacity delivery and fast Li diffusion kinetics. This dual-modified cathode shows advanced cycling stability (94.1% at 1C after 100 cycles in 2.7-4.3 V), even at a high cutoff voltage and high rate, and advanced rate capability (159.7 mAh g at 10C). Therefore, it provides a novel solution to achieve both high capacity and highly stable cyclability in Ni-rich cathode materials.
富镍层状阴极(LiNiCoAlO)商业化面临的一个关键挑战是循环过程中的容量衰减,这源于其界面不稳定性和结构退化。在此,提出了一种一步双改性策略,原位合成钇(Y)掺杂和磷酸钇(YPO)改性的LiNiCoAlO阴极材料。证实YPO涂层作为良好的离子导体可稳定固体电解质界面,而形成的强Y-O键可束缚TM-O板,在深度脱锂(>4.3V)状态下强化晶格结构。特别是,这两种综合优势有效地承受了H2-H3相变时产生的各向异性应变,并进一步减轻了晶胞尺寸中的裂纹产生,确保了高容量输送和快速的锂扩散动力学。这种双改性阴极显示出先进的循环稳定性(在2.7-4.3V下1C循环100次后为94.1%),即使在高截止电压和高倍率下也是如此,以及先进的倍率性能(10C时为159.7mAh g)。因此,它为在富镍阴极材料中实现高容量和高稳定性循环提供了一种新的解决方案。